Purpose: Molecular processes in primary osteoblasts were analyzed in response to magnetic and electric field exposure to examine its potential impact on bone healing.

Methods: Primary osteoblasts were exposed to a combination of a magnetic field and an additional electric field (EFMF) (20 Hz, 700 mV, 5 mT, continuous sinusoids) in vitro. mRNA- and protein-expressions were assessed during a time interval of 21 days and compared with expression data obtained from control osteoblasts.

Results: We observed an autonomous osteoblast differentiation process in vitro under the chosen cultivation conditions. The initial proliferative phase was characterized by a constitutively high mRNA expression of extracellular matrix proteins. Concurrent EFMF exposure resulted in significanly increased cell proliferation (fold change: 1.25) and reduced mRNA-expressions of matrix components (0.5-0.75). The following reorganization of the extracellular matrix is prerequisite for matrix mineralization and is characterised by increased Ca deposition (1.44). On molecular level EFMF exposure led to a significant decreased thrombospondin 1 (THBS1) mRNA- (0.81) and protein- (0.54) expression, which in turn reduced the TGFß1-dependent mRNA- (0.68) and protein- (0.5) expression of transforming growth factor beta induced (ßIG-H3) significantly, an inhibitor of endochondral ossification. Consequently, EFMF exposure stimulated the expression of genes characteristic for endochondral ossification, such as collagen type 10, A1 (1.50), osteopontin (1.50) and acellular communication network factor 3 (NOV) (1.45).

Conclusions: In vitro exposure of osteoblasts to EFMF supports cell differentiation and induces gene- and protein-expression patterns characteristic for endochondral ossification during bone fracture healing in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061914PMC
http://dx.doi.org/10.1186/s40634-022-00477-9DOI Listing

Publication Analysis

Top Keywords

endochondral ossification
16
primary osteoblasts
12
efmf exposure
12
magnetic electric
8
electric field
8
extracellular matrix
8
characteristic endochondral
8
exposure
6
expression
6
efmf
5

Similar Publications

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

Orthodontic Management in Pediatric Patients with Rare Diseases: Case Reports.

J Clin Med

December 2024

Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, U.O.C. Pediatric Dentistry Unit, 00161 Rome, Italy.

: The orthodontic management of pediatric patients with rare diseases, such as Ectodermal Dysplasia (ED) and Osteogenesis Imperfecta (OI), requires complex protocols due to dental anomalies in both the number and structure of teeth. These conditions necessitate a departure from traditional orthodontic approaches, as skeletal anchoring is often required because of these anomalies. A patient with ED, characterized by hypodontia and malformed teeth, presented with insufficient natural teeth for anchorage.

View Article and Find Full Text PDF

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!