A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Shell Matrix Protein N38 of Pinctada fucata, Inducing Vaterite Formation, Extends the DING Protein to the Mollusca World. | LitMetric

In the animal kingdom, DING proteins were only found in Chordata and Aschelminthes. At present study, a potential DING protein, matrix protein N38, was isolated and purified from the shell of Pinctada fucata. Tandem mass spectrometry analysis revealed that 14 peptide segments matched between N38 and human phosphate-binding protein (HPBP). HPBP belongs to the DING protein family and has a "DINGGG-" sequence, which is considered a "signature" of HPBP. In this study, the mass spectrometry analysis results showed that N38 had a "DIDGGG-" sequence; this structure is a mutation from the "DINGGG-" structure, which is a distinctive feature of the DING protein family. The role of N38 during calcium carbonate formation was explored through the in vitro crystallization experiment. The results of scanning electron microscopy and Raman spectrum analysis indicated that N38 induced vaterite formation. These findings revealed that N38 might regulate and participate in the precise control of the crystal growth of the shell, providing new clues for biomineralization mechanisms in P. fucata and DING protein family studies. In addition, this study helped extend the research of DING protein to the Mollusca world.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-022-10116-0DOI Listing

Publication Analysis

Top Keywords

ding protein
24
protein family
12
protein
9
matrix protein
8
protein n38
8
pinctada fucata
8
vaterite formation
8
protein mollusca
8
mass spectrometry
8
spectrometry analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!