A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of the presence of water on sulfur removal capacity during HS removal from syngas using ZnO adsorbent. | LitMetric

Compared to extensive studies on affecting parameters in sulfur removal with ZnO adsorbents from coal gasification syngas, similar studies conducted for biomass gasification syngas (BGS) are quite rare. Thus, considering the BGSs with high water content, this study was performed to investigate the effect of HO presence in syngas on sulfur removal capacity (SRC) of ZnO adsorbents. Initially, the effect of gas composition and temperature on SRC in binary gas mixture was investigated. While HO decreased the SRC, as expected, the highest reduction in the capacity occurred in the CO-HS gas mixture due to observed COS formation. Second, the SRCs and resulting COS formation were compared for synthetic syngas mixtures having different water contents and for different amounts of adsorbents. Finally, the separate and combined effects of temperature and HO on SRC and COS formation in synthetic syngas were investigated by comparing SRCs of typical syngas under wet and dry conditions. The results showed that increasing the amount of adsorbent and temperature results in higher SRC due to a reduction in COS formation through the reactions of COS with H and HO. This indicates that it is critical to control the residence time of syngas and temperature to reduce COS formation during ZnO adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2073272DOI Listing

Publication Analysis

Top Keywords

cos formation
20
sulfur removal
12
removal capacity
8
syngas
8
zno adsorbents
8
gasification syngas
8
temperature src
8
gas mixture
8
synthetic syngas
8
cos
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!