A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lauric acid impairs insulin-induced Akt phosphorylation by upregulating SELENOP expression via HNF4α induction. | LitMetric

Selenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes. However, the effect of medium-chain fatty acids (MCFAs) on Selenop is unknown. Here we report novel mechanisms that underlie the lauric acid-mediated Selenop gene regulation in hepatocytes. Lauric acid upregulated Selenop expression in Hepa1-6 hepatocytes and mice liver. A luciferase promoter assay and computational analysis of transcription factor-binding sites identified the hepatic nuclear factor 4α (HNF4α) binding site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay showed that lauric acid increased the binding of HNF4α to the SELENOP promoter. The knockdown of Hnf4α using siRNA canceled the upregulation of lauric acid-induced Selenop. Thus, the lauric acid-induced impairment of Akt phosphorylation brought about by insulin was rescued by the knockdown of either Hnf4α or Selenop. These results provide new insights into the regulation of SeP by fatty acids and suggest that SeP may mediate MCFA-induced hepatic insulin signal reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00163.2021DOI Listing

Publication Analysis

Top Keywords

lauric acid
12
selenop expression
12
fatty acids
12
selenop
11
akt phosphorylation
8
selenop promoter
8
hnf4α selenop
8
knockdown hnf4α
8
lauric acid-induced
8
lauric
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!