Many neurodegenerative disorders are caused by abnormal accumulation of misfolded proteins. In spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded (polyQ-expanded) ataxin-1 (ATXN1) causes neuronal toxicity. Lowering total ATXN1, especially the polyQ-expanded form, alleviates disease phenotypes in mice, but the molecular mechanism by which the mutant ATXN1 is specifically modulated is not understood. Here, we identified 22 mutant ATXN1 regulators by performing a cross-species screen of 7787 and 2144 genes in human cells and Drosophila eyes, respectively. Among them, transglutaminase 5 (TG5) preferentially regulated mutant ATXN1 over the WT protein. TG enzymes catalyzed cross-linking of ATXN1 in a polyQ-length-dependent manner, thereby preferentially modulating mutant ATXN1 stability and oligomerization. Perturbing Tg in Drosophila SCA1 models modulated mutant ATXN1 toxicity. Moreover, TG5 was enriched in the nuclei of SCA1-affected neurons and colocalized with nuclear ATXN1 inclusions in brain tissue from patients with SCA1. Our work provides a molecular insight into SCA1 pathogenesis and an opportunity for allele-specific targeting for neurodegenerative disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057624 | PMC |
http://dx.doi.org/10.1172/JCI156616 | DOI Listing |
Hum Mol Genet
December 2024
Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd. Dallas, TX 75390, United States.
Mol Ther Nucleic Acids
December 2024
Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models.
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1), a dominantly inherited neurodegenerative disorder caused by an expanded trinucleotide repeat in the gene, is characterized by motor dysfunction, cognitive impairment, and death from compromised swallowing and respiration. To delineate specific cell types that contribute to respiratory dysfunction, we utilized the floxed conditional knock-in mouse. Whole body plethysmography during spontaneous respiration and respiratory challenge showed that mice exhibit a spontaneous respiratory phenotype characterized by elevated respiratory frequency, volumes, and respiratory output.
View Article and Find Full Text PDFEMBO J
September 2024
Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence.
View Article and Find Full Text PDFFront Cell Neurosci
July 2024
Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich, United Kingdom.
Huntington's disease (HD) is caused by an expansion of CAG trinucleotide repeat in the HTT gene; the exact pathogenesis of HD currently remains unclear. One of the promising directions in the study of HDs is to determine the molecular mechanism underlying the development and role of microRNAs (miRNAs). This study aimed to identify the profile of miRNAs in an HD human cell line model as diagnostic biomarkers for HD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!