Lithium-sulfur (Li-S) batteries are the most promising energy storage systems owing to their high energy density. However, shuttling of polysulfides detracts the electrochemical performance of Li-S batteries and thus prevents the commercialization of Li-S batteries. Here, TiO@porous carbon nanofibers (TiO@PCNFs) are fabricated combining electrospinning and electrospraying techniques and the resultant TiO@PCNFs are evaluated for use as an interlayer in Li-S batteries. TiO nanoparticles on PCNFs are observed from SEM and TEM images. A high initial discharge capacity of 1510 mA h g is achieved owing to the novel approach of electrospinning the carbon precursor and electrospraying TiO nanoparticles simultaneously. In this approach TiO nanoparticles capture polysulfides with strong interaction and the PCNFs with high conductivity recycle and re-use the adsorbed polysulfides, thus leading to high reversible capacity and stable cycling performance. A high reversible capacity of 967 mA h g is reached after 200 cycles at 0.2C. The cell with the TiO@PCNF interlayer also delivers a reversible capacity of around 1100 mA h g at 1C, while the cell without the interlayer exhibits a lower capacity of 400 mA h g. Therefore, this work presents a novel approach for designing interlayer materials with exceptional electrochemical performance for high performance Li-S batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053086PMC
http://dx.doi.org/10.1039/d0ra01791dDOI Listing

Publication Analysis

Top Keywords

li-s batteries
24
tio nanoparticles
12
reversible capacity
12
interlayer li-s
8
electrochemical performance
8
performance li-s
8
novel approach
8
high reversible
8
performance high
8
li-s
6

Similar Publications

Sulfurized polyacrylonitrile (SPAN) exhibits a very high cycle stability by overcoming the shuttle effect of conventional Li-S batteries. However, there are still controversies in SPAN about the bonding types of sulfur with the matrix, their critical synthesis temperature regions, and their roles in the electrochemical lithium storage reaction, seriously hindering the economical synthesis of SPAN, the optimization of performances, and the exploration of other SPAN-like alternatives. The key to solving the above problems lies in accurate measurements of the thermodynamic evolution of bonding interactions in the synthesis process as well as in the electrochemical process.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (Li2S), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).

View Article and Find Full Text PDF

This work develops 1,1'-oxalyldiimidazole (ODI) as a functional electrolyte additive. This film-forming additive improves the wide range of temperature and rate performances of LiNiCoMnO/graphite (NCM811) batteries. After 1200 cycles at room temperature (25 °C), the discharge capacity retention rate is 51.

View Article and Find Full Text PDF

All-solid-state Li-S batteries with fast solid-solid sulfur reaction.

Nature

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, China.

With promises for high specific energy, high safety and low cost, the all-solid-state lithium-sulfur battery (ASSLSB) is ideal for next-generation energy storage. However, the poor rate performance and short cycle life caused by the sluggish solid-solid sulfur redox reaction (SSSRR) at the three-phase boundaries remain to be solved. Here we demonstrate a fast SSSRR enabled by lithium thioborophosphate iodide (LBPSI) glass-phase solid electrolytes (GSEs).

View Article and Find Full Text PDF

Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li but with sufficiently high relative dielectric constants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!