In this work, we successfully demonstrated the facile fabrication of highly flexible and floatable CuO/rGO on Vietnamese traditional paper (VTP) for the solar-light-driven photocatalytic degradation of the antibiotic ciprofloxacin. The catalyst membrane was prepared by the green reduction of both Cu(OH) to CuO nanoparticles and graphene oxide to reduced graphene oxide. VTP has a fibrous structure with tiny fibers connected like a spider web and multiple layers in the form of a multidimensional array, which functions as a flexible and highly porous supporter to the catalyst. Moreover, the microfibrillated cellulose of VTP acts as micro-capillaries to drag ciprofloxacin (CIP) close to the active sites on the CuO/rGO/VTP surface, which improves the adsorption capacity and photocatalytic efficiency of ciprofloxacin. The adsorption process is best described by the pseudo-first-order and Freundlich models. The maximum photodegradation of CIP by the catalyst is more than 80% attained after 1.5 h under solar light irradiation with a fixed CIP concentration of 10 mg L. The catalyst membrane exhibited good reusability of up to 5 cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052828PMC
http://dx.doi.org/10.1039/d0ra01854fDOI Listing

Publication Analysis

Top Keywords

facile fabrication
8
fabrication highly
8
highly flexible
8
flexible floatable
8
floatable cuo/rgo
8
cuo/rgo vietnamese
8
vietnamese traditional
8
traditional paper
8
solar-light-driven photocatalytic
8
photocatalytic degradation
8

Similar Publications

A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).

View Article and Find Full Text PDF

Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).

View Article and Find Full Text PDF

The concentration of small molecules reflects the normality of physiological processes in the human body, making the development of simple and efficient detection equipment essential. In this work, inspired by a facile strategy in point-of-care detection, two devices were fabricated to detect small molecules via photocurrent measurement. A linear response of the photocurrent against the concentration of the small molecules was found.

View Article and Find Full Text PDF

Hydrolysis of 2D Nanosheets Reverses Rheumatoid Arthritis Through Anti-Inflammation and Osteogenesis.

Adv Mater

December 2024

Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.

Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.

View Article and Find Full Text PDF

Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!