Nutrient (nitrogen [N] and phosphorus [P]) pollution is a pervasive water quality issue in the USA for small streams and rivers. The effect of nutrients on the biotic condition of streams is often evaluated with biological indicators such as macroinvertebrate assemblages or periphyton assemblages, particularly diatoms. Molecular approaches facilitate the use of periphyton assemblages as bioindicators because periphyton is diverse and its composition as a whole, rather than just diatoms, soft-bodied algae, or any single group, may convey additional information about responses to nutrients. To further develop the concept that a taxonomically-broad evaluation of periphyton assemblages could be useful for developing stream bioindicators, we examined microbial assemblage composition with both 16S and 18S rRNA genes, enabling us to evaluate composition in 3 domains. We measured otherwise unknown nutrient responses of different periphyton groups in situ with experiments that used glass fiber filters to allow diffusion of amended nutrients into a stream. We deployed these experimental setups in 2 streams that differ in the extent of agricultural land-use in their catchments in the southeastern USA. Experiments consisted of controls, N amendments, P amendments, and both N and P amendments. Periphyton assemblages that grew on the filters differed significantly by stream, date or season, and nutrient treatment. Assemblage differences across treatments were more consistent among Bacteria and Archaea than among eukaryotes. Effects of nutrient amendments were more pronounced in the stream with less agricultural land use and, therefore, lower nutrient loading than in the stream with more agricultural land use and higher nutrient loading. Combined N and P amendments decreased species richness and evenness for Bacteria and Archaea by ∼36 and ∼9%, respectively, compared with controls. Indicator species analysis revealed that specific clades varied in their response to treatments. Indicators based on the responses of these indicator clades were related to nutrient treatments across sites and seasons. Analyses that included all the taxa in a domain did not resolve differences in responses to N vs P. Instead, better resolution was achieved with an analysis focused on diatoms, which responded more strongly to P than N. Overall, our results showed that in situ nutrient-diffusing substrate experiments are a useful approach for describing assemblage responses to nutrients in streams. This type of molecular approach may be useful to environmental agencies and stakeholders responsible for assessing and managing stream water quality and biotic condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044509 | PMC |
http://dx.doi.org/10.1086/708935 | DOI Listing |
Environ Res
August 2024
Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China. Electronic address:
In near-natural basins, zooplankton are key hubs for maintaining aquatic food webs and organic matter cycles. However, the spatial patterns and drivers of zooplankton in streams are poorly understood. This study registered 165 species of zooplankton from 147 sampling sites (Protozoa, Rotifers, Cladocera and Copepods), integrating multiple dimensions (i.
View Article and Find Full Text PDFSci Total Environ
June 2024
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China.
While eutrophication has led to serious habitat degradation and biotic shifts in freshwater ecosystems, most current studies have focused on changes in community assemblages, with few considering the effect of eutrophication on food webs. We conducted a field study in subtropical headwater streams with a gradient of water nutrient levels to examine the effect of increasing water nutrients on food webs by using the long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA) as a measure of the nutritional quality of food. Basal food resources (macrophytes, submerged leaf litter, and periphyton), and aquatic consumers (macroinvertebrates and fish) were collected, and their fatty acid (FA) profiles were analyzed.
View Article and Find Full Text PDFEnviron Pollut
May 2024
Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China. Electronic address:
Environ Pollut
March 2024
Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China. Electronic address:
Periphyton, a microbial assemblage of autotrophic and heterotrophic organisms, is vital to aquatic ecosystems. While exposure to macrolide antibiotics has been confirmed to reduce the biodiversity and damage the critical ecological functions in indoor microcosm bioassays, the distribution of periphyton along a macrolide antibiotic pollution gradient in a river has yet to be determined. Herein, we established the spatiotemporal distribution of five major macrolides, i.
View Article and Find Full Text PDFWater (Basel)
January 2023
USEPA Office of Research and Development, Center for Environmental Measurement and Modeling, 26W Martin Luther King Drive, Cincinnati, OH 45268, USA.
Wastewaters and leachates from various inland resource extraction activities contain high ionic concentrations and differ in ionic composition, which complicates the understanding and effective management of their relative risks to stream ecosystems. To this end, we conducted a stream mesocosm dose-response experiment using two dosing recipes prepared from industrial salts. One recipe was designed to generally reflect the major ion composition of deep well brines (DWB) produced from gas wells (primarily Na, Ca, and Cl) and the other, the major ion composition of mountaintop mining (MTM) leachates from coal extraction operations (using salts dissociating to Ca, Mg, Na, SO and HCO)-both sources being extensive in the Central Appalachians of the USA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!