Modifying stride length and/or foot strike in running results in mechanical alterations associated with injury risk. Stride length and foot strike have often been treated as independent factors that affect running mechanics, but there is evidence to suggest that they may be coupled. The purpose of this study was to determine if foot strike and stride length are coupled in running, and if so, can these variables be independently manipulated? Additionally, we sought to determine how independently and simultaneously manipulating stride length and foot strike influenced running kinematics and kinetics. Fifteen individuals ran over ground with stride lengths +/- 10 % of their preferred stride length while adopting both a fore/mid foot strike and rear foot strike pattern, as well as running with their self-selected stride length and foot strike when the opposite variable was controlled. Three-dimensional motion capture and force plate data were captured synchronously during the manipulated stride length x foot strike trials. The results indicate that foot strike and stride length are coupled, with shorter stride lengths being associated with a F/MFS and longer stride lengths being associated with a RFS pattern. Impact peak magnitude was primarily dependent on foot strike, with a F/MFS pattern reducing the magnitude of the impact peak force regardless of stride length. Peak vertical and horizontal ground reaction forces were found to be primarily dependent on stride length, with longer stride lengths resulting in increased vertical and horizontal ground reaction forces, regardless of foot strike. It is difficult, but possible, to independently manipulate stride length and foot strike. Clinicians should be aware of the coupled changes in stride length and foot strike.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039359 | PMC |
http://dx.doi.org/10.3389/fspor.2022.768801 | DOI Listing |
Acta Bioeng Biomech
September 2024
Uzbek State University of Physical Education and Sport, Republic of Uzbekistan.
The aim of the research was to develop the design of a striking dummy and the theoretical foundations of martial arts strikes and to test its effectiveness in a pedagogical experiment. This paper presents the design of a striking dummy and the foundational theories behind martial arts strikes. We used modern microelectronics, including a diverse range of sensors, for executing a multitude of electromechanical measurements.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).
View Article and Find Full Text PDFJ Biomech
January 2025
Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, 04469, ME, United States of America. Electronic address:
Interlimb coordination can be used as a metric to study the response of the neuromuscular system to mechanical perturbations and behavioral information. Behavioral information providing haptic feedback on thigh angle has been shown to increase stride length and consequently walking speed, but the effect of such feedback on limb coordination has not been determined. The current work investigates the effects of this feedback on lower-limb coordination and examines if such effects are dependent on the age of the walker.
View Article and Find Full Text PDFBackground: Running-related overuse injuries are common among recreational runners; however, there is currently little prospective research investigating the role of running characteristics on overuse injury development.
Purpose: To investigate the relationship between running characteristics and lower extremity musculoskeletal injury (MSKI).
Study Design: Cohort study; Level of evidence, 2.
Sensors (Basel)
December 2024
Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
The analysis of running gait has conventionally taken place within an expensive and restricted laboratory space, with wearable technology offering a practical, cost-effective, and unobtrusive way to examine running gait in more natural environments. This pilot study presents a wearable inertial measurement unit (IMU) setup for the continuous analysis of running gait during an outdoor parkrun (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!