Background: Whether epilepsy surgery, such as corpus callosotomy is effective in patients with pediatric intractable epilepsy with mitochondrial dysfunction is controversial, and there is a paucity of literature on this issue.
Objective: This study aimed to assess and describe the effective application of corpus callosotomy for treating pediatric patients with intractable epilepsy with mitochondrial dysfunction in a single institution in Korea.
Methods: This was a retrospective study of pediatric patients with intractable epilepsy and mitochondrial dysfunction who underwent corpus callosotomy in a single tertiary care center. Ten patients with intractable epilepsy with mitochondrial dysfunction were included, and 10 patients with intractable epilepsy with non-mitochondrial dysfunctions were included as a control group. The outcomes of corpus callosotomy in the two groups were evaluated and compared.
Results: Corpus callosotomy was safely performed and was efficacious in reducing seizure frequency in both groups. The group with non-mitochondrial dysfunction showed slightly better treatment outcomes, with greater reductions in overall seizures, traumatic falling seizures, and electroencephalography improvements, but the differences in treatment effects were not statistically significant.
Conclusions: Our study is meaningful as it identified the use of corpus callosotomy as a means to save lives and improve quality of life by reducing the frequency of seizures and those associated with traumatic falling in pediatric patients with intractable epilepsy with mitochondrial dysfunction. Larger multicenter studies are necessary to confirm the efficacy of the procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039434 | PMC |
http://dx.doi.org/10.1177/17562864221092551 | DOI Listing |
Front Neurol
December 2024
Brain and Development Research Axis, Azrieli CHU Ste-Justine Research Center, Montreal, QC, Canada.
Epileptic spasms (ES) are a unique seizure type typically presenting in the form of infantile epileptic spasms syndrome (IESS) with characteristic hypsarrhythmia on scalp EEG and a preponderance with developmental delay or regression. While pharmacotherapy is the mainstay of treatment, surgical options, including disconnective or resective procedures, are increasingly recognized as viable therapeutic options for recurrent or persistent ES. However, limited data on safety, effectiveness, and prognostic factors hinder informed decision-making regarding surgery indications, timing, and intervention type.
View Article and Find Full Text PDFClin Genet
January 2025
Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
Heterozygous pathogenic variants in MBD5 (MIM*611472) and CCM2 (MIM*607929) cause autosomal dominant intellectual developmental disorder 1 (MIM#156200) and cerebral cavernous malformations-2 (MIM#603284), respectively. Both conditions may present with seizures, epilepsy, and status epilepticus. However, super-refractory status epilepticus, defined as seizures lasting more than 24 h, has not been described in either condition.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Objective: To confirm the incidence of subcutaneous effusion secondary to cerebrospinal fluid leakage after craniotomy, analyze the risk factors for cerebrospinal fluid leakage leading to subcutaneous effusion, summarize the underlying causes of its occurrence and explore the corresponding treatment strategies.
Methods: A retrospective analysis was conducted on 757 patients who underwent craniotomy at our hospital from January to December 2023. The authors documented the sex, age, surgical characteristics, and history of chronic diseases for all patients, including those who developed subcutaneous effusion secondary to cerebrospinal fluid leakage.
Expert Rev Neurother
January 2025
Department of Paediatrics, Cambridge University Hospitals, Cambridge, UK.
Introduction: The seizures in Lennox-Gastaut syndrome are typically resistant to treatment. Seven antiseizure medications (ASMs) in the US (six in the UK/EU) are licensed for the treatment of seizures in LGS: lamotrigine, topiramate, rufinamide, clobazam, felbamate (not licensed in the UK/EU), cannabidiol and fenfluramine. Other options include neurostimulation, corpus callosotomy and dietary therapies, principally the ketogenic diet and its variants.
View Article and Find Full Text PDFLennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy (DEE) characterized by multiple types of drug-resistant seizures (which must include tonic seizures) with classical onset before 8 years (although some cases with later onset have also been described), abnormal electroencephalographic features, and cognitive and behavioral impairments. Management and treatment of LGS are challenging, due to associated comorbidities and the treatment resistance of seizures. A panel of five epileptologists reconvened to provide updated guidance and treatment algorithms for LGS, incorporating recent advancements in antiseizure medications (ASMs) and understanding of DEEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!