Similar Publications

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

In the hydrated title complex, [Fe(dpa)(N)]·HO (dpa is 2,2'-di-pyridyl-amine, CHN), the Fe ion is coordinated in a distorted octa-hedral manner by two neutral, chelating dpa ligands and two anionic, monodentate azide (N ) ions in a -configuration. Distortion results from different Fe-N bond lengths [2.1397 (13)-2.

View Article and Find Full Text PDF

Mimicking the CO-Bound State of the [Ni,Fe]-CO Dehydrogenase.

Angew Chem Int Ed Engl

December 2024

Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.

Article Synopsis
  • Complexes featuring a doubly reduced carbonite ligand connect a nickel(II) center with a transition metal(II) ion (like Fe, Co, or Zn) have been synthesized.
  • NMR spectroscopy and DFT calculations show that the carbonite ligand shows flexible coordination in non-coordinating solvents.
  • The [Ni-CO-Fe] complex mirrors an intermediate in CO-conversion by the [Ni,Fe]-CODH enzyme, and findings suggest transition metals lower reduction potential while increasing C-O bond cleavage propensity, hinting at the functional choice of iron(II) in the enzyme's active site.
View Article and Find Full Text PDF

Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments.

J Inorg Biochem

February 2025

Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States. Electronic address:

Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage.

View Article and Find Full Text PDF

Paramagnetic complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) derivatives have shown potential for molecular imaging with magnetic resonance. DOTA-tetraglycinate (DOTA-4AmC) coordinated with lanthanide metal ions (Ln) demonstrates pH/temperature sensing with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) and Chemical Exchange Saturation Transfer (CEST), respectively, detecting nonexchangeable (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!