This paper proposes a low-cost portable electronic system for estimating step width during the human gait cycle. This device, intended to support the Walking Stance item of the fall risk assessment test Performance Oriented Mobility Assessment (POMA), contains three electronic boards, comprising two sensing nodes and a concentrator. Each sensing node contains a force sensitive resistor (FSR) and time-of-flight camera (TOF). Each FSR is placed inside the subject's shoe, while each TOF camera is located at the back of their foot. The FSR detects contact between heel and ground, and the TOF measures the distance to a barrier located on the right side of the walking path. Step width is calculated as the difference between the TOF measurements. After the walk is complete, the information obtained by the FSRs and TOFs is sent via a 433 MHz wireless communication to the concentrator board, which is connected to the USB port of a personal computer (PC). The proposed step width measurement system was validated with an infrared based motion capture (Vicon Corp.), giving an error equal to 11.4% 5.5%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041237 | PMC |
http://dx.doi.org/10.1016/j.ohx.2020.e00126 | DOI Listing |
J Neuroeng Rehabil
January 2025
Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.
Background: Motor module (a.k.a.
View Article and Find Full Text PDFHum Mov Sci
January 2025
Sports Physical Therapy Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece. Electronic address:
Introduction: Breathing and postural control is reported to be both neuromuscularly and mechanically interdependent. To date, the effects of voluntary abdominal and thoracic breathing (VAB and VTB) on the EMG activity of muscles involved in both respiratory and postural functions, as well as gait biomechanics related to these breathing patterns, have not been investigated in young, healthy adults. The aim of the study was to evaluate the EMG responses of neck and trunk muscles, as well as the kinematic, stability, and kinetic parameters of gait induced by VAB and VTB compared to involuntary breathing (INB).
View Article and Find Full Text PDFThis study explores the propagation dynamics of Bessel-Gaussian (BG) beams, focusing on vortex-splitting behavior under short-range atmospheric conditions with varying disturbances. Using the split-step beam propagation method, the research reveals that greater atmospheric turbulence and longer transmission distances enhance both the average vortex splitting distance and its variance while reducing the average topological charge of the received OAM mode. Conversely, laminar conditions promote beam stability.
View Article and Find Full Text PDFMed Phys
January 2025
Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
Background: Breast cancer is the leading cause of female cancer mortality worldwide, accounting for 1 in 6 cancer deaths. Surgery, radiation, and systemic therapy are the three pillars of breast cancer treatment, with several strategies developed to combine them. The association of preoperative radiotherapy with immunotherapy may improve breast cancer tumor control by exploiting the tumor radio-induced immune priming.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
Introduction: We aimed to compare gait between individuals with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and cognitively unimpaired (CU) individuals and to evaluate the association between gait and regional amyloid beta (Aβ) burden in AD and DLB.
Methods: We included 420 participants (70 AD, 70 DLB, 280 CU) in the Mayo Clinic Study of Aging (MCSA). Gait was assessed using a pressure-sensor walkway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!