AI Article Synopsis

  • The study investigates genistein's effects on spinal cord injury in mice, focusing on its potential neuroprotective mechanisms.
  • Genistein treatment improved exercise recovery, reduced spinal cord swelling, and decreased cell death while altering macrophage ratios and inflammation markers in the injured area.
  • The findings suggest that genistein may protect nerves by reducing inflammation through the activation of M2 macrophages and inhibiting specific signaling pathways related to inflammation.

Article Abstract

Objective: The present study was designed to study the effect of genistein on spinal cord injury (SCI) in mice and to explore its underlying mechanisms.

Methods: We established SCI mouse model, and genistein was administered for treatment. We used the Basso, Beattie, and Bresnahan (BBB) exercise rating scale to evaluate exercise recovery, and the detection of spinal cord edema was done using the wet/dry weight method. Apoptosis was determined by TUNEL staining, and inflammation was evaluated by measuring inflammatory factors by an ELISA kit. The expression of M1 and M2 macrophage markers was determined using flow cytometry, and the expression of proteins was detected using immunoblotting.

Results: Genistein treatment not only improved the BBB score but also reduced spinal cord edema in SCI mice. Genistein treatment reduced apoptosis by increasing Bcl2 protein expression and decreasing Bax and caspase 3 protein expression. It also reduced the expression of inflammatory cytokines (TNF-, IL-1, IL-6, and IL-8) in the SCI area of SCI mice. Flow cytometry analysis indicated that genistein treatment significantly decreased the ratio of M1 macrophages (CD45+/Gr-1-/CD11b+/iNOS+) and increased the ratio of M2 macrophages (CD45+/Gr-1-/CD11b+/Arginase 1+) in the SCI area of SCI mice on the 28 day after being treated with genistein. We also found that genistein treatment significantly decreased the expression of TLR4, MyD88, and TRAF6 protein in the SCI area of SCI mice on 28 day after being treated with genistein.

Conclusion: Our findings suggested that genistein exerted neuroprotective action by inhibiting neuroinflammation by promoting the activation of M2 macrophages, and its underlying mechanisms might be related to the inhibition of the TLR4-mediated MyD88-dependent signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054478PMC
http://dx.doi.org/10.1155/2022/4790344DOI Listing

Publication Analysis

Top Keywords

sci mice
20
spinal cord
16
genistein treatment
16
sci area
12
area sci
12
genistein
9
sci
9
cord injury
8
inhibiting neuroinflammation
8
cord edema
8

Similar Publications

Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!