Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity.

RSC Adv

Dr. A. P. J. Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST Kattankulathur Chennai Tamil Nadu - 603 203 India

Published: November 2021

Carbonic anhydrase IX has been used as a hypoxia endogenous marker in a range of solid tumors including renal cell, lung, bladder and tumors of the head and neck. α-CA IX isozyme is over-expressive in hypoxic environment which becomes an attractive target for the design of inhibitors' targeting cancer particularly, tumor progression and invasion. In the process of designing new leads for the inhibition of tumor-associated hCA IX, the best triazole benzene sulfonamide derivatives were obtained from the QSAR model published in the research paper as cited. The statistically validated QSAR model was utilized for bioactivity prediction of novel leads. Further the designed molecules having good scores were subjected to molecular docking studies and molecular dynamic simulation studies. Designed compounds 1, 2, 20, 24 and 27 have shown predicted bioactivity of 9.13, 9.65, 10.05, 10.03 and 10.104 logarithmic units respectively using QSAR model 2. The low energy conformations of the above compounds exhibited good Autodock binding energy scores (-8.1, -8.2, -8.1, -8.3 and -9.2 K cal mol) and interactions with Gln92, Thr200, Asn66 and His68. Desmond's molecular dynamics simulations studies for 100 ns of compound 27 compared to reference SLC0111 provided useful structural insights of human carbonic anhydrase IX inhibition. Compound 27 with new chemical structure displayed both hydrophobic and hydrophilic stable interactions in the active site. RMSD, RMSF, RoG, H-bond and SASA analysis confirmed the stable binding of compound 27 with 5FL4 structure. In addition, MM-PBSA and MM-GBSA also affirm the docking results. We propose the designed compound 27 (predicted Ki = ∼0.07 nM) as the best theoretical lead which may further be experimentally studied for selective inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044052PMC
http://dx.doi.org/10.1039/d1ra07377jDOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
12
qsar model
12
docking studies
8
studies molecular
8
molecular dynamics
8
triazole benzene
8
benzene sulfonamide
8
sulfonamide derivatives
8
human carbonic
8
anhydrase inhibition
8

Similar Publications

Circulating tumor cells and cell-free nucleic acids are novel diagnostic, prognostic and predictive tools for non-invasive and cost-effective cancer detection in liquid biopsy. Carbonic anhydrase IX (CAIX) has been proposed as a biomarker in urogenital tumors and urine sediment. Our aim was to evaluate CAIX full-length percentage (CAIX FL%) in urine-cell-free RNA (cfRNA) and its relationship with tumor-cell-associated RNA (TC-RNA).

View Article and Find Full Text PDF

Purpose: To evaluate the safety and efficacy of sublingual methazolamide in patients with open-angle glaucoma (OAG) and inform future trial design.

Methods: Fourteen participants (28 eyes) aged 50 to 90 years with bilateral OAG and intraocular pressure (IOP) between 18 and 35 mmHg after medication washout were included. Participants were randomized to receive either 25 mg or 50 mg of sublingual methazolamide once daily for one week, followed by twice-daily administration during the second week.

View Article and Find Full Text PDF

Assessing the Risk of Kidney Stone Development in Patients With Idiopathic Intracranial Hypertension Treated With Carbonic Anhydrase Inhibitors.

J Neuroophthalmol

December 2024

College of Medicine (JM, AGL), Texas A&M University, Houston, Texas; Department of Ophthalmology (SAA, OAD, AGL), Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas; Department of Ophthalmology (SAA), The University of Jordan, Amman, Jordan; Department of Ophthalmology (OAD), Hashemite University, Amman, Jordan; Department of Ophthalmology (AL, AGL), Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; Departments of Ophthalmology, Neurology, and Neurosurgery (AGL), Weill Cornell Medicine, New York, New York; Department of Ophthalmology (AGL), University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Ophthalmology (AGL), The University of Iowa Hospitals and Clinics, Iowa City, Iowa.

Background: The prevalence of idiopathic intracranial hypertension (IIH) is rising with the global obesity epidemic. Carbonic anhydrase inhibitors (CAIs), such as acetazolamide, have been shown to be effective in IIH but can also lead to kidney stone formation. This study evaluates the risk of kidney stone development in patients with IIH treated with CAIs.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is the most common malignancy that metastasizes to the thyroid; however, metastasis of RCC to a primary tumor of the thyroid is rare. The present study reports the case of RCC that had metastasized to the primary thyroid tumor; namely, a hyalinizing trabecular tumor (HTT). Notably, the RCC was resected 2 years prior.

View Article and Find Full Text PDF

Hippocampus carbonic anhydrase 1 via ERK pathway may be involved in depressive like behaviors.

J Affect Disord

December 2024

Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. Electronic address:

Major depressive disorder (MDD) is a destructive mental disease, yet the mechanism is still not clear. Carbonic anhydrase, an efficient catalyst for CO conversion to carbonate and protons, could affect many functions, such as memory formation recognition. Lately, we illustrated that carbonic anhydrase 1 (CAR1) knockout (CAR1) mice could lead to depressive-like behaviors, but the underlying molecular mechanism is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!