Non-noble bimetallic NiMo supported on zeolitic imidazolate framework-derived porous carbon (NiMo@FDC) catalyst for lignin depolymerization has been successfully developed. The synergism between Ni and Mo species in NiMo@FDC catalyst could promote the catalytic cleavage of C-O linkages in Kraft lignin. At a low reaction temperature of 240 °C and under 4 MPa H, the lignin liquefaction yield was 98.85 wt% and minimum coke yield was 1 wt%, particularly when using 10%NiMo@FDC catalyst. Additionally, at a high reaction temperature of 300 °C and under 2 MPa H, there was an overall yield of 86 wt% of liquid product and 42 wt% of petroleum ether soluble product. The higher heating value (HHV) increased from 27.65 MJ kg to 34.11 MJ kg. In the cycling experiment, the bifunctional catalyst also demonstrated reversability and stability. The synergy of Ni hydrogenation sites and Mo coupled adsorption sites identified a possible mechanism path, which could offer considerable potential for lignin depolymerization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044013 | PMC |
http://dx.doi.org/10.1039/d1ra05354j | DOI Listing |
Int J Biol Macromol
January 2025
Department of Life Sciences and Systems Biology, University of Torino, Italy.
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.
View Article and Find Full Text PDFEnviron Res
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China. Electronic address:
Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg L) than traditional catalysts.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:
Self-supported hardwood kraft lignin (HKL)/graphene-based carbon fibrous aerogel (L/GCA) presents a fascinating prospect as the electrode of supercapacitor due to its impress rate capacity and cyclic stability. However, the hydrophobicity nature of L/GCA hampers the ion transfer between the electrode and electrolyte, thereby limiting its electrochemical performance. To address this, we enhanced the electrochemical performance of L/GCA through boron doping based on the improvement of hydrophilicity and the re-arrangement of electron density.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China. Electronic address:
In this paper, cellulose-lignin films containing Fe were prepared by the codissolution-precipitation method, and the films have high transparency as well as high UV absorption. In this process, kraft lignin chelates with Fe and then bonds with cellulose through hydrogen bonding, evenly distributing within the film. The morphological results showed that the kraft lignin chelated with Fe bound tightly linked to cellulose within the Fe@cellulose-lignin composite films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!