Modified porous starch (PS), by introducing octenyl succinic anhydride (OSA) moieties, was synthesized successfully, which was applied as an emulsion of β-carotene for the first time. The pores and channels within porous starch provided more possibilities for OSA to modify starch. The ester linkage of OSA modified PS with different degrees of substitution (DS) were confirmed by both C solid-state NMR and Fourier transform-infrared spectroscopy (FT-IR). The hydrophobic octenyl succinic and hydrophilic hydroxyl groups of OSA modified PS showed the good emulsifying capability, which could be utilized to prepare β-carotene emulsions. And the bioaccessibility of β-carotene was also enhanced with increasing DS of OSA modified starch. This study not only paves a new way using porous starches for modification of starch, but also offers an attractive alternative for obtaining emulsion-based delivery systems for bioactive components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049959PMC
http://dx.doi.org/10.1039/c9ra10079bDOI Listing

Publication Analysis

Top Keywords

octenyl succinic
12
porous starch
12
osa modified
12
succinic anhydride
8
modified porous
8
bioaccessibility β-carotene
8
β-carotene emulsions
8
starch
6
modified
5
osa
5

Similar Publications

In this study, octenyl succinic acid sodium starch (OSAS) decorated with chitosan (CS) of different molecular weights (50-150 kDa) and concentrations (10-30 mg/mL) was used to stabilize an emulsion coencapsulating with vitamin A (V) and vitamin D (V). The effect of CS decoration on the thermal and UV stability of the emulsion, as well as the underlying mechanism, was elucidated. The incorporation of CS increased the retention rates of V and V by 11.

View Article and Find Full Text PDF

The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability.

View Article and Find Full Text PDF

Synthesis of a novel starch-based emulsion gel with remarkable low-temperature stability via esterification, ozone-oxidation and ion induction.

Carbohydr Polym

March 2025

Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:

A novel starch-based emulsion gel was designed via octenyl succinic anhydride (OSA) esterification, ozone oxidation, and ion (Ca) induction. The gel properties and low-temperature stability of emulsion gel with different oxidation time (0, 5, 10, 15, 25 min; OW-0, 5, 10, 15, 25) were systematically investigated. FTIR revealed that the oxidation of CC and -OH groups in OW-0 by ozone oxidation led to their cleavage into carbonyl groups, and than transformed to carboxyl groups.

View Article and Find Full Text PDF

Chitosan/octenyl succinic anhydride starch complex particles stabilize Pickering emulsion for astaxanthin encapsulation.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.

The stabilizing effect of biopolymers on Pickering emulsions has attracted widespread interest in recent years. In this study, the interactions between chitosan (CS) and octenyl succinic anhydride starch (OS) were investigated and used to modulate the interfacial properties of Pickering emulsions, which are crucial for determining emulsion stability. CS/OS complex particles were prepared via electrostatic and hydrogen-bonding interactions and used to stabilize Pickering emulsions for the encapsulation of astaxanthin (AST).

View Article and Find Full Text PDF

The aim of this study was to investigate the Octenyl succinic anhydride (OSA) modification and nanonization of Cyperus esculentus starch (CES) on its physicochemical properties. Cyperus esculentus starch nanoparticles (SNPs) were prepared by nanoprecipitation method and modified with OSA. The results showed that the average particle size of the prepared SNPs was 125.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!