In recent years, the construction of drug carriers that integrate diagnosis and treatment has become a new trend. In this article, a metal-organic framework (Zr-MOF) was synthesized and functionalized using acetaldehyde-modified-cystine (AMC) to form the functional drug carrier Zr-MOF/AMC which could be used to determine the concentration of glutathione (GSH) for cancer diagnosis, and to achieve pH/GSH dual-responsive release of methotrexate (MTX) for cancer therapy. The cleavage of the AMC disulfide bond by GSH generates two fluorescent molecules that produce strongly enhanced fluorescence, and the intensity is proportional to the GSH concentration. The green fluorescence of Zr-MOF/AMC in cancer cells proves that it can be applied in cell imaging to detect abnormal GSH concentrations for early diagnosis. In addition, MTX loaded on the Zr-MOF/AMC is released by the cleavage of the -S-S- and -C[double bond, length as m-dash]N- bonds at the high GSH concentration and low pH in cancer cells. This dual-responsive drug release helps to deliver drugs to cancer cells more precisely. All the experiments suggest that this novel type of pH/GSH dual-responsive Zr-MOF/AMC nanoparticle may serve as a new drug delivery system for cancer diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048860 | PMC |
http://dx.doi.org/10.1039/c9ra05741b | DOI Listing |
Small
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China. Electronic address:
Dihydroartemisinin (DHA), a compound extracted from the herbal medicine Artemisia annua, has shown promise as a clinical treatment strategy for colorectal cancer. However, its clinical use is hindered by its low water solubility and bioavailability. A pH/glutathione (GSH) dual-responsive nano-herb delivery system (PMDC NPs) has been developed for the targeted delivery of DHA, accompanied by abundant carbon monoxide (CO) release.
View Article and Find Full Text PDFMol Pharm
November 2024
School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
Targeted nanodrug delivery systems are highly anticipated for the treatment of malaria. It is known that can induce new permeability pathways (NPPs) on the membrane of infected red blood cells (iRBCs) for their nutrient uptake. The NPPs also enable the uptake of nanoparticles (NPs) smaller than 80 nm.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China. Electronic address:
Stimuli-responsive drug delivery systems based on sodium carboxymethyl cellulose (NaCMC) for drug release encounter inherent challenges. In this research, a novel pH and glutathione (GSH) dual-responsive system, CPT-S-S-NaCMC@ZIF-8/SP-PEG, was constructed. Firstly, the prodrug CPT-S-S-OH was synthesized and combined with NaCMC to form GSH-responsive micelles CPT-S-S-NaCMC, significantly enhancing the drug loading and grafting rates to 63.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2024
Institute of Nanoscience & Engineering, Henan University, Kaifeng 475004, China. Electronic address:
Responsive release systems have received extensive attention to enhance pesticide utilization efficiency and reduce environmental pollution. In this study, pH/GSH dual responsive release system based on brush-like silica (bSiO) carriers was constructed to enhance the utilization of pesticides. The bSiO carriers present core-shell structure, length of 550 nm, diameter of 350 nm and shell thickness of 100 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!