Multi-walled carbon nanotubes (MWNTs) were modified with carboxylic acid functional groups (MWCNTs-(COOH) ) prior to decoration with FeO nanoparticles. A further modification step by polyethyleneimine (PEI) resulted in FeO-MWCNTs@PEI which provided a suitable platform for coordination and reduction of silver ions to obtain an FeO-MWCNTs@PEI-Ag nanocomposite with highly dispersed Ag nanoparticles. The FeO-MWCNTs@PEI-Ag hybrid material was characterized by various techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), and was used as an efficient catalyst for chemoselective reduction of nitroaromatic and nitrile compounds to their corresponding amines in aqueous solution at ambient temperature. Nitrofurazone, a cytotoxic antibiotic, as a non-aromatic example was also reduced selectively at the nitro group without reduction of the other functionalities in the presence of FeO-MWCNTs@PEI-Ag. The catalyst was magnetically recoverable and maintained its activity for at least six cycles without considerable loss of efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048720PMC
http://dx.doi.org/10.1039/c9ra09561fDOI Listing

Publication Analysis

Top Keywords

chemoselective reduction
8
nitrile compounds
8
feo-mwcnts@pei-ag nanocomposite
8
reduction nitro
4
nitro nitrile
4
feo-mwcnts@pei-ag
4
compounds feo-mwcnts@pei-ag
4
nanocomposite reusable
4
reusable catalyst
4
catalyst multi-walled
4

Similar Publications

CO Reduction at a Borane-Modified Iron Complex: A Secondary Coordination Sphere Strategy.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.

This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = CMe ) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO. Control experiments underscore the critical nature of borane incorporation for transforming CO to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H].

View Article and Find Full Text PDF

In this study, an iridium-catalyzed selective 1,4-reduction of α,β-unsaturated carbonyl compounds is realized, with water as a solvent and formic acid as a hydride donor. The new efficient iridium catalyst features a 2-(4,5-dihydroimidazol-2-yl)quinoline ligand. The chemoselectivity and catalyst efficiency are highly dependent on the electronic and steric properties of the substrates.

View Article and Find Full Text PDF

An organophotocatalyzed approach for the chemoselective dealkylation of phenols is developed. This method demonstrates exceptional selectivity toward the cleavage of phenolic ethers over equivalent aliphatic ethers and alkyl benzoates, presenting a broad range of functional group sustainability. This strategy also enables selective debenzylation of phenols in the presence of reduction-sensitive functional groups.

View Article and Find Full Text PDF

Hydrogels with antibacterial activities have the potential for many biomedical applications, such as wound healing, because of their capacity to maintain a moist environment and prevent infections. In this work, an ultrasound-induced supramolecular hydrogel consisting of easily accessible reducing-end-free glucosaminylbarbiturate-based hydrogelators that serve the fabrication of silver nanoparticles (AgNPs), excluding the addition of any external reducing or stabilizing agents, has been developed. The innovative synthetic approach relied on the use of -disubstituted barbituric acid derivatives as a versatile chemical platform that site-selectively reacted with the amino function of glucosamine.

View Article and Find Full Text PDF

Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes.

J Am Chem Soc

December 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused -heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!