Similar Publications

Article Synopsis
  • Phthalides are secondary metabolites found in plants, fungi, and liverworts, known for their pharmacological properties, leading to the development of a new derivative called Z11.
  • The study investigates how Z11 interacts with double-stranded DNA (dsDNA), using various analytical techniques to understand its binding dynamics and mechanisms.
  • Results show that Z11 binds in the minor groove of dsDNA, forming a stable complex primarily through π-alkyl interactions and hydrogen bonding, which may be useful for designing better DNA-targeting drugs.
View Article and Find Full Text PDF

We developed a novel thiourea Lewis-base catalyst with phenol moieties for the enantioselective 5--bromolactonization of stilbenecarboxylic acids to afford chiral 3-substituted phthalides. The phenol moieties are crucial for the enantio- and regio-selectivity.

View Article and Find Full Text PDF

A facile new method for the synthesis of 3,3-disubstituted phthalides is reported. A successive reaction process begins with the TfOH-catalyzed cyclization of -alkynylbenzoic acids followed by an -regioselective electrophilic alkylation of various electron-rich aromatic compounds or alkenes, which has been successfully developed. The corresponding regioselective products of 3-substituted phthalide were obtained in good to high yields.

View Article and Find Full Text PDF

Herein, we report the asymmetric Ru/cinchonine dual catalysis that provides straightforward access to enantioselective synthesis of C-3 substituted phthalides via tandem C-H activation/Michael addition cascade. The use of readily accessible and less expensive [RuCl(p-cym)] and cinchonine catalyst for the one-pot assembly of chiral phthalides greatly overcomes the present trend of using highly sophisticated catalysts. The developed method provides access to both enantiomers of a product using pseudoenantiomeric cinchona alkaloids as catalysts streamlining the synthesis of phthalide in both the optically active forms.

View Article and Find Full Text PDF

Rh-Catalyzed cascade C-H activation/C-C cleavage/cyclization of carboxylic acids with cyclopropanols.

Chem Commun (Camb)

June 2021

CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China and School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.

Merging both C-H and C-C activation in a tandem process is a marked challenge. A novel Rh(iii)-catalyzed C-H activation/ring opening C-C cleavage/cyclization of carboxylic acids with cyclopropanols was developed for the synthesis of 3-substituted phthalides and α,β-butenolides. This reaction displays excellent functional group tolerance with respect to both carboxylic acids and cyclopropanols and features relatively mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!