Similar Publications

An Asymmetric Perylene Diimide Dimer Acceptor for High Performance Organic Solar Cells.

Chempluschem

May 2023

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China.

The vinylene-bridged helical perylene diimide (PDI) dimer (PDI2) with a build-in twisted configuration is an alternative building block to the parent PDI for the construction of efficient non-fullerene acceptor (NFAs). Moreover, it has been proved asymmetric strategy plays a vital role in the development of NFAs. Herein, we designed and synthesized a pair of acceptor-donor-acceptor (A-D-A) type PDI2 derivatives, namely IDTIC-PDI and IDT-diPDI2, which contain asymmetric and symmetric end-cap units, respectively.

View Article and Find Full Text PDF

Perylene Diimide-based Non-fullerene Acceptors With A-D-A'-D-A Architecture For Organic Solar Cells.

Chem Asian J

February 2023

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.

The vinylene-bridged helical PDI dimer (PDI2) has been an alternative PDI building block for non-fullerene acceptor (NFAs). However, the development of PDI2 derivatives still lag behind, and most of PDI2 derivatives based organic solar cells (OSCs) only achieved a moderate power conversion efficiencies (PCE) of less than 8%. In this contribution, an acceptor-donor-acceptor-donor-acceptor (A-D-A'-D-A) architecture was introduced to facilitate the improvement of photovoltaic properties.

View Article and Find Full Text PDF

Porous organic polymers (POPs), owing to their abundant porosity, high stability and well-tunable properties, are promising candidates as heterogeneous photocatalysts for organic transformations. Here we report two vinylene-bridged donor-acceptor (D-A) structural POPs (TpTc-POP and TbTc-POP) that are facilely constructed by the electron-rich triarylamine and electron-deficient tricyanomesitylene as key building blocks by the organic base catalyzed Knoevenagel condensation. Both TpTc-POP and TbTc-POP possess hierarchical meso- and micro-pores with a high surface area.

View Article and Find Full Text PDF

A family of fully bridged triphenylamines with embedded 5- and 7-membered rings is presented. The compounds are potent electron donors capable to undergo donor/acceptor interactions with strong cyano-based acceptors both in the solid state and solution. These interactions were evaluated by IR and UV/vis spectroscopy as well as X-ray crystallography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!