The quest for efficient solar-to-fuel conversion has led to the development of numerous homogeneous and heterogeneous systems for photochemical stimulation of 2H + 2e → H. Many such systems consist of a photosensitizer, an H-evolving catalyst (HEC), and sacrificial electron donor often with an electron relay between photosensitizer and HEC. Colloidal platinum remains a popular HEC. We report here a novel, simple, and high yield synthesis of Pt nanoparticles (Pt NPs) associated with human heavy chain ferritin (Hfn). The formation of the Pt NPs capitalizes on Hfn's native catalysis of autoxidation of Fe(ii)(aq) (ferroxidase activity). Fe(ii) reduces Pt(ii) to Pt(0) and the rapid ferroxidase reaction produces FeO(OH), which associates with and stabilizes the incipient Pt NPs. This Pt/Fe-Hfn efficiently catalyzes photosensitized H production when combined with Eosin Y (EY) as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor. With white light irradiation turnover numbers of 300H per Pt, 250H per EY were achieved. A quantum yield of 18% for H production was obtained with 550 nm irradiation. The fluorescence emission of EY is quenched by TEOA but not by Pt/Fe-Hfn. We propose that the photosensitized H production from aqueous TEOA, EY, Pt/Fe-Hfn solution occurs a reductive quenching pathway in which both the singlet and triplet excited states of EY are reduced by TEOA to the anion radical, EY˙, which in turn transfers electrons to the Pt/Fe-Hfn HEC. Hfn is known to be a remarkably versatile scaffold for incorporation and stabilization of noble metal and semiconductor nanoparticles. Since both EY and Hfn are amenable to scale-up, we envision further refinements to and applications of this photosensitized H-generating system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049210 | PMC |
http://dx.doi.org/10.1039/d0ra00341g | DOI Listing |
Nanoscale
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Loading cocatalysts on semiconductor-based photocatalysts to create active reaction sites is a preferable method to enhance photocatalytic activity and a widely adopted strategy to achieve effective photocatalytic applications. Although theoretical calculations suggest that the broad density of states of noble metal cocatalysts, such as Pt, act as a recombination center, this has never been experimentally demonstrated. Herein, we employed pico-nano and nano-micro second transient absorption spectroscopy to investigate the often overlooked photogenerated holes, instead of the widely studied electrons on Pt- and Ni-loaded SrTiO to evaluate the effects of cocatalysts as a recombination center.
View Article and Find Full Text PDFHeliyon
January 2025
Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA.
Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
This study employed a hydrothermal method to coat CuS onto PbS quantum dots loaded with ZnO, resulting in a core-shell-structured (PbS/ZnO)@CuS hetero-structured photocatalyst. The sulfide coating enhanced the photocatalyst's absorption in the near-infrared to visible light range and effectively reduced electron-hole (h) pair recombination during photocatalytic processes. Electron microscopy analysis confirmed the successful synthesis of this core-shell structure using polyvinylpyrrolidone (PVP); however, the spatial hindrance effect of PVP led to a disordered arrangement of the CuS lattice, facilitating electron-hole recombination.
View Article and Find Full Text PDFChem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!