Similar Publications

Objectives: Comparative evaluation of indirect pulp therapy (IPT) with silver diamine fluoride (SDF), Type VII glass ionomer cement (GIC), and calcium hydroxide (Ca(OH)2) in young permanent molars.

Materials And Methods: This was randomized controlled trial, in which 45 children with 60 young permanent first molars were allocated as; Group A: IPT with SDF, Group B: Type VII GIC, and Group C: Ca(OH)2. Clinical and radiographic evaluation and comparison was done at baseline, 3, 6, 12 months.

View Article and Find Full Text PDF

Aim: Clinical and radiographic evaluation of SDF versus MTA as indirect pulp capping agents in deeply carious first permanent molars.

Methodology: This study was conducted on (30) first permanent molars indicated for indirect pulp capping (IPC) randomly allocated to either SDF or MTA groups (n = 15). The molars were finally restored with glass hybrid glass ionomer restoration.

View Article and Find Full Text PDF

Clinical Effectiveness of Biomaterials in Indirect Pulp Therapy Treatment of Young Permanent Molars with Deep Carious Lesions: A Case-Control Study.

Int J Clin Pediatr Dent

November 2024

Department of Pediatric and Preventive Dentistry, Shree Guru Gobind Singh Tricentenary Dental College, Hospital and Research Institute, Gurugram, Haryana, India.

Aim: The present case-control study was planned to assess the comparative efficacy of resin-modified calcium silicate, resin-modified glass ionomer, and Dycal as pulp capping agents in indirect pulp therapy for deeply carious young permanent molars.

Materials And Methods: Thirty deeply carious young posterior teeth were treated by indirect pulp therapy. During the treatment, the cavity floor was lined with TheraCal or resin-modified glass ionomer cement (RMGIC) in the study group and with Dycal (control group) followed by GC IX and composite restoration.

View Article and Find Full Text PDF

Semisynthesis of Alkaloid Derivatives: Pyranoacridone-Hydroxamic Acid Cytotoxic Conjugates with HDAC and Topoisomerase II α Dual Inhibitory Activity.

J Nat Prod

January 2025

Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.

Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from des--methylacronycine () and noracronycine () pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an cytotoxicity assay, KT32 () with noracronycine () as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC values of 1.

View Article and Find Full Text PDF

Uncovering the Performance Enhancing Mechanism of Methanesulfonate Ligands in Perovskite Quantum Dots for Light-Emitting Devices.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, P. R. China.

Perovskite quantum dots (PQDs) have attracted more and more attention in light-emitting diode (LED) devices due to their outstanding photoelectric properties. Surface ligands not only enable size control of quantum dots but also enhance their optoelectronic performance. However, the efficiency of exciton recombination in PQDs is often hindered by the desorption dynamics of surface ligands, leading to suboptimal electrical performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!