Excessive soil salt content (SSC) seriously affects the crop growth and economic benefits in the agricultural production area. Prior research mainly focused on estimating the salinity in the top bare soil rather than in deep soil that is vital to crop growth. For this end, an experiment was carried out in the Hetao Irrigation District, Inner Mongolia, China. In the experiment, the SSC at different depths under vegetation was measured, and the Sentinel-1 radar images were obtained synchronously. The radar backscattering coefficients (VV and VH) were combined to construct multiple indices, whose sensitivity was then analyzed using the best subset selection (BSS). Meanwhile, four most commonly used algorithms, partial least squares regression (PLSR), quantile regression (QR), support vector machine (SVM), and extreme learning machine (ELM), were utilized to construct estimation models of salinity at the depths of 0-10, 10-20, 0-20, 20-40, 0-40, 40-60 and 0-60 cm before and after BSS, respectively. The results showed: (a) radar remote sensing can be used to estimate the salinity in the root zone of vegetation (0-30 cm); (b) after BSS, the correlation coefficients and estimation accuracy of the four monitoring models were all improved significantly; (c) the estimation accuracy of the four regression models was: SVM > QR > ELM > PLSR; and (d) among the seven sampling depths, 10-20 cm was the optimal inversion depth for all the four models, followed by 20-40 and 0-40 cm. Among the four models, SVM was higher in accuracy than the other three at 10-20 cm (R = 0.67, R = 0.12%). These findings can provide valuable guidance for soil salinity monitoring and agricultural production in the arid or semi-arid areas under vegetation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053309PMC
http://dx.doi.org/10.7717/peerj.13306DOI Listing

Publication Analysis

Top Keywords

radar remote
8
soil salt
8
salt content
8
depths vegetation
8
crop growth
8
agricultural production
8
20-40 0-40
8
estimation accuracy
8
models svm
8
soil
5

Similar Publications

A Combined CNN-LSTM Network for Ship Classification on SAR Images.

Sensors (Basel)

December 2024

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, 29806 Brest, France.

Satellite SAR (synthetic aperture radar) imagery offers global coverage and all-weather recording capabilities, making it valuable for applications like remote sensing and maritime surveillance. However, its use in machine learning-based automatic target classification faces challenges, including the limited availability of SAR target training samples and the inherent constraints of SAR images, which provide less detailed features compared to natural images. These issues hinder the effective training of convolutional neural networks (CNNs) and complicate the transfer learning process due to the distinct imaging mechanisms of SAR and natural images.

View Article and Find Full Text PDF

Grasslands, being vital ecosystems with significant ecological and socio-economic importance, have been the subject of increasing attention due to their role in biodiversity conservation, carbon sequestration, and agricultural productivity. However, accurately classifying grassland management intensity, namely extensive and intensive practices, remains challenging, especially across large spatial extents. This research article presents a comprehensive investigation into the classification of grassland management intensity in two distinct regions of Poland, NUTS2 - namely Podlaskie (PL84) and Wielkopolskie (PL41), by integrating data from Sentinel-1 and Sentinel-2 satellite imagery.

View Article and Find Full Text PDF

The eruption in Fagradalsfjall Volcano, located in Reykjanes Peninsula, Iceland, from several centuries' dormant states, occurred for the first time on March 19, 2021. Observations of Fagradalsfjall Volcano were conducted in 2021, and the eruption period lasted for six months until 18 September 2021. Six days pair of interferograms were generated from ninety synthetic aperture radar (SAR) data.

View Article and Find Full Text PDF

Apis florea bees were recently identified in Egypt, marking the second occurrence of this species on the African continent. The objective of this study was to track the distribution of A. florea in Egypt and evaluate its potential for invasive behaviour.

View Article and Find Full Text PDF

Interferometric Synthetic Aperture Radar (InSAR) is a widely used remote sensing technology for Earth observation, enabling the detection and measurement of ground deformation through the generation of interferograms. However, phase noise remains a critical factor that degrades interferogram quality. To address this issue, this study proposes MOMFNet, a deep learning approach for InSAR phase filtering based on multi-objective multi-kernel feature extraction that leverages multi-objective multi-kernel feature extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!