Aluminum-doped and undoped zinc oxide films were investigated as potential front and rear contacts of perovskite single and perovskite/silicon tandem solar cells. The films were prepared by atomic layer deposition (ALD) at low (<200 °C) substrate temperatures. The deposited films were crystalline with a single-phase wurtzite structure and exhibit excellent uniformity and low surface roughness which was confirmed by XRD and SEM measurements. Necessary material characterizations allow for realizing high-quality films with low resistivity and high optical transparency at the standard growth rate. Spectroscopic ellipsometry measurements were carried out to extract the complex refractive index of the deposited films, which were used to study the optics of perovskite single junction and perovskite/silicon tandem solar cells. The optics was investigated by three-dimensional finite-difference time-domain simulations. Guidelines are provided on how to realize perovskite solar cells exhibiting high short-circuit current densities. Furthermore, detailed guidelines are given for realizing perovskite/silicon tandem solar cells with short-circuit current densities exceeding 20 mA cm and potential energy conversion efficiencies beyond 31%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052116PMC
http://dx.doi.org/10.1039/d0ra00939cDOI Listing

Publication Analysis

Top Keywords

atomic layer
8
layer deposition
8
perovskite/silicon tandem
8
tandem solar
8
solar cells
8
deposition metal
4
metal oxides
4
oxides efficient
4
efficient perovskite
4
perovskite single-junction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!