TRPM3 is a calcium-permeable cation channel expressed in a range of sensory neurons that can be activated by heat and the endogenous steroid pregnenolone sulfate (PS). During inflammation, the expression and function of TRPM3 are both augmented in somatosensory nociceptors. However, in isolated dorsal root ganglion (DRG) neurons application of inflammatory mediators like prostaglandins and bradykinin (BK) inhibit TRPM3. Therefore, the aim of this study was to examine the effect of preceding activation of cultured 1 day old mouse DRG neurons by the inflammatory mediator BK on TRPM3-mediated calcium responses. Calcium signals were recorded using the intensity-based dye Fluo-8. We found that TRPM3-mediated calcium responses to PS were enhanced by preceding application of BK in cells that responded to BK with a calcium signal, indicating BK receptor (BKR) expression. The majority of cells that co-expressed TRPM3 and BKRs also expressed TRPV1, however, only a small fraction co-expressed TRPA1, identified by calcium responses to capsaicin and supercinnamaldehyde, respectively. Signaling and trafficking pathways responsible for sensitization of TRPM3 following BK were characterized using inhibitors of second messenger signaling cascades and exocytosis. Pharmacological blockade of protein kinase C, calcium-calmodulin-dependent protein kinase II and diacylglycerol (DAG) lipase did not affect BK-induced sensitization, but inhibition of DAG kinase did. In addition, release of calcium from intracellular stores using thapsigargin also resulted in TRPM3 sensitization. Finally, BK did not sensitize TRPM3 in the presence of exocytosis inhibitors. Collectively, we show that preceding activation of DRG neurons by BK sensitized TRPM3-mediated calcium responses to PS. Our results indicate that BKR-mediated activation of intracellular signaling pathways comprising DAG kinase, calcium and exocytosis may contribute to TRPM3 sensitization during inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043526PMC
http://dx.doi.org/10.3389/fncel.2022.843225DOI Listing

Publication Analysis

Top Keywords

calcium responses
20
drg neurons
12
trpm3-mediated calcium
12
calcium
9
trpm3
8
preceding activation
8
protein kinase
8
dag kinase
8
trpm3 sensitization
8
responses
5

Similar Publications

Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders.

ACS Pharmacol Transl Sci

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.

View Article and Find Full Text PDF

Background: Para-phenylenediamine (PPD) is a crystalline solid that belongs to the aromatic amine group, widely used in the manufacturing of various dyes. PPD exhibits toxic effects on female hormone stability, ovarian function, and embryo development. Although studies have shown that PPD exposure can damage oocyte quality in female mice, research on its effects on male reproductive capability, particularly on human sperm quality and function, is limited.

View Article and Find Full Text PDF

A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes.

View Article and Find Full Text PDF

Abnormal corneal nerve function and associated disease is a significant public health concern. It is associated with prevalent ocular surface diseases, including dry eye disease. Corneal nerve dysfunction is also a common side effect of refractive surgeries, as well as a symptom of diseases that cause peripheral neuropathies.

View Article and Find Full Text PDF

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!