The phosphate-binding protein (PhoS) is a periplasmic protein which is part of the high-affinity phosphate transport system of Escherichia coli. Hyperproduction of PhoS in strains carrying a multicopy plasmid containing phoS led to partial secretion of the protein. By 6 h after transfer to phosphate-limiting medium, about 13% of the total newly synthesized PhoS was secreted to the medium. Kinetic studies demonstrated that this secretion consists of newly synthesized PhoS. This secretion occurs in PhoS-hyperproducer strains but not in a PhoS-overproducer strain. Another type of secretion concerning periplasmic PhoS was observed in both PhoS-hyperproducer and PhoS-overproducer strains. This mode of secretion depended upon the addition of phosphate to cells previously grown in phosphate-limiting medium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC211957 | PMC |
http://dx.doi.org/10.1128/jb.169.4.1386-1390.1987 | DOI Listing |
mBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in .
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Hanyang University ERICA, Ansan 15588, Republic of Korea.
Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:
Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA. Electronic address:
So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!