Glioblastoma (GBM) cells invade the brain by following linear structures like blood vessel walls and white matter tracts by using specific motility modes. In this protocol, we describe two micropatterning techniques allowing recapitulation of these linear tracks : micro-contact printing and deep UV photolithography. We also detail how to maintain, transfect, and prepare human glioma propagating cells (hGPCs) for migration assays on linear tracks, followed by image acquisition and analysis, to measure key parameters of their motility. For complete details on the use and execution of this protocol, please refer to Monzo et al. (2016) and Monzo et al. (2021a).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043773 | PMC |
http://dx.doi.org/10.1016/j.xpro.2022.101331 | DOI Listing |
J Vis Exp
December 2024
Beijing Institute of Brain Disorders, Capital Medical University; Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University; Collaborative Innovation Center for Brain Disorders, Capital Medical University;
Spinal cord gliomas are commonly malignant tumors of the spinal cord, leading to a high rate of disability. However, uniform treatment guidelines and comprehensive data on spinal cord gliomas remain limited due to the lack of suitable preclinical animal models. Developing a simple and reproducible animal model has become essential for advancing basic and translational research.
View Article and Find Full Text PDFGlioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.
View Article and Find Full Text PDFCureus
December 2024
Neurology, Palmetto General Hospital, Hialeah, USA.
The corpus callosum can reveal a "butterfly" pattern on imaging in various conditions, including glioblastoma, primary central nervous system lymphoma, tumefactive multiple sclerosis, and toxoplasmosis. Early differentiation among these conditions is crucial to avoid aggressive treatments. In one case, a 70-year-old woman with a history of multiple sclerosis experienced a neurological decline.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada.
Significance: Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.
Aim: We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.
Toxicol Res
January 2025
Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea.
Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!