Potentiometric and UV-Vis spectrophotometric titrations for evaluation of the antioxidant capacity of chicoric acid.

RSC Adv

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University Changsha 410013 China.

Published: March 2020

The antioxidant capacity (AOC) of chicoric acid (ChA, the main antioxidant component of ) or an ethanol/water-extract of flowers was determined by potentiometric and UV-Vis absorption spectrophotometric titrations with ABTS˙ radical cations as the oxidizing probe. The potentiometric and spectrophotometric titration results agreed well with each other. The trolox-equivalent antioxidant capacity (TEAC) of ChA was found to be 5.00 ± 0.07 (potentiometry) and 4.81 ± 0.06 (spectrophotometry) at pH 7.4, and the TEAC value has been proven to be actually equal to the ratio of the stoichiometric ratio of the ABTS˙-ChA redox reaction to that of the ABTS˙-trolox redox reaction. The TEAC of the ethanol/water-extract of flowers, expressed in mM (trolox) per gram per liter ( extract), was found to be 0.241 ± 0.006 mmol g (potentiometry) and 0.240 ± 0.007 mmol g (spectrophotometry) at pH 7.4. The stoichiometric ratio of the ABTS˙-ChA redox reaction varied from 10.8 to 3.2, depending on the solution pH and the final ABTS˙-ChA concentration ratio. However, the stoichiometric ratio of the ABTS˙-trolox redox reaction remained 2.0 at various solution-pH values and final ABTS˙-trolox concentration ratios. The unusual stoichiometric ratio of the ABTS˙-ChA redox reaction is examined by potentiometric/spectrophotometric titrations and cyclic voltammetry, clearly revealing the new mechanism of a rapid redox process followed by a slow redox process at pH 7.4 and 9.0 when the ABTS˙-ChA molar concentration ratio is greater than 4. The electrochemistry methods coupled with spectrophotometry can conveniently and reliably provide important quantitative and qualitative information on redox chemistry, and are expected to find wider applications in accurately evaluating the redox activities of many other natural/synthesized antioxidants and oxidants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050702PMC
http://dx.doi.org/10.1039/d0ra01248cDOI Listing

Publication Analysis

Top Keywords

redox reaction
20
stoichiometric ratio
16
antioxidant capacity
12
ratio abts˙-cha
12
abts˙-cha redox
12
redox
9
potentiometric uv-vis
8
spectrophotometric titrations
8
chicoric acid
8
ethanol/water-extract flowers
8

Similar Publications

Dichlorination of olefins with trichloroisocyanuric acid (TCCA) and tetrabutylammonium chloride (TBACl).

Org Biomol Chem

January 2025

Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey.

Herein, a new metal-free, molecular chlorine-free, environmentally friendly, atom-economical, short time, inexpensive and simple operation method with mild reaction conditions for chlorination of alkenes, cyclic alkenes, ,-unsaturated carbonyl compounds, heteroaromatics, and natural products was reported with up to 96% yields using trichloroisocyanuric acid (TCCA) as the electrophilic chlorine source and TBACl as the nucleophilic chlorine source. It was demonstrated with bicyclic alkene benzonorbornadiene that regioselective chlorobromination and dibromination reactions can be carried out through TCCA/TBABr redox reactions, where TCCA acts as an oxidant in the presence of TBABr. The structures of the redox products were confirmed as a result of control experiments conducted with the newly presented DBI/TBACl and DBI/TBABr halogenation pairs.

View Article and Find Full Text PDF

Cobalt Hexacyanoferrate Cathode with Stable Structure and Fast Kinetics for Aqueous Zinc-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.

Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.

View Article and Find Full Text PDF

Tuning Fork Scanning Electrochemical Cell Microscopy for Resolving Morphological and Redox Properties of Single Ag Nanowires.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!