AI Article Synopsis

Article Abstract

Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy. Here, the contribution of plasma-generated reactive oxygen species (ROS) in plasma liquid chemistry was determined by labeling these admixing heavy oxygen O to the feed gas or by using heavy water H O as a solvent for the bait molecule. The inclusion of heavy or light oxygen atoms by the labeled ROS into the different cysteine products was determined by mass spectrometry. While products like cysteine sulfonic acid incorporated nearly exclusively gas phase-derived oxygen species (atomic oxygen and/or singlet oxygen), a significant contribution of liquid phase-derived species (OH radicals) was observed for cysteine--sulfonate. The role, origin, and reaction mechanisms of short-lived species, namely hydroxyl radicals, singlet oxygen, and atomic oxygen, are discussed. Interactions of these species both with the target cysteine molecule as well as the interphase and the liquid bulk are taken into consideration to shed light onto several reaction pathways resulting in observed isotopic oxygen incorporation. These studies give valuable insight into underlying plasma-liquid interaction processes and are a first step to understand these interaction processes between the gas and liquid phase on a molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051657PMC
http://dx.doi.org/10.1039/c9ra08745aDOI Listing

Publication Analysis

Top Keywords

oxygen
9
short-lived species
8
oxygen species
8
atomic oxygen
8
singlet oxygen
8
interaction processes
8
species
7
heavy
4
heavy path
4
path determining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!