This supplementary data supports the research article 'Genome-wide DNA methylation profiling reveals candidate biomarkers and probable molecular mechanism of metabolic syndrome' (Baek et al., in press). To obtain these data, 32 participants with metabolic syndrome (MetS) were enrolled in the associated study. We collected peripheral blood mononuclear cells (PBMCs) from 11 patients with MetS and nine controls and compared genome-wide gene expression and DNA methylation signatures. The remaining 12 participants were used for the experimental validation of the candidate groups. We provide the raw, analyzed, and filtered genome-wide DNA methylation data, obtained using the Infinium Human MethylationEPIC BeadChIP array, and whole transcriptome sequencing data (accession number GSE181647). We list the differentially expressed and differentially methylated genes and their biological functions. These data can serve as a basis for screening appropriate epigenetic biomarkers for MetS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048064 | PMC |
http://dx.doi.org/10.1016/j.dib.2022.108183 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:
It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!