The spinodal decomposition of the γ-phase in U-Nb and U-Zr alloys under irradiation was investigated using the phase-field method coupled with micro-elasticity theory and rate dependent cascade mixing model. Microstructure evolutions of spinodal decomposition in U-Nb and U-Zr alloys were simulated by considering different initial compositions and dose rates. The volume fraction and composition distribution under different cascade mixing were presented. The simulation results show that the volume fractions and equilibrium composition of the (Nb,Zr)-rich γ-phase and the rate of spinodal decomposition are influenced by the dose rate and initial alloy composition. The cascade mixing can drive Nb or Zr atoms back into solution until a new equilibrium state between local cascade mixing and spinodal decomposition is reached. The evolution analysis indicated that irradiation-induced cascade mixing acts in opposition to thermodynamically driven spontaneous spinodal decomposition, which can not only slow down the spinodal decomposition but also reduces the composition range of the miscibility gap.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044010 | PMC |
http://dx.doi.org/10.1039/d1ra07324a | DOI Listing |
ACS Nano
January 2025
Department of Physics, National University of Singapore, Singapore 117551, Singapore.
Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China.
Microstructure and deformation properties of both unaged and aged cladding material were studied at 400 °C for 10,000 h. The results indicated that carbide formation occurred in the cladding material, while thermal aging treatment resulted in spinodal decomposition and G-phase formation in the aged ferrite phase. Furthermore, intensive straight slip bands formed in both unaged and aged austenite phases.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The glacial phase can be formed from supercooled liquid (SCL) in certain systems, which is called liquid-liquid transition (LLT). Revealing the nature of the glacial phase especially in a single-component system is crucial for understanding the LLT process. Here, by using flash differential scanning calorimetry and cold-field transmission electron microscopy, the structure of the d-mannitol glacial phase and the phase transition kinetics between the glacial phase and SCL were studied.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Precious metal electrical contact materials are pivotal in microelectronic devices due to their excellent chemical stability and electrical properties. Their practical application is hindered by the strength, contact resistance, and high cost. Multi-principal elements alloys (MPEAs) provide the possibility to develop cost-effective materials with enhanced mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!