The inorganic stannous-based perovskite oxide SrSnO has been utilized in various optoelectronic applications. Facilitating the synthesis process and engineering its properties, however, are still considered challenging due to several aspects. This paper reports on a thorough investigation of the influence of rare-earth (praseodymium) doping on the microstructural and optoelectronic properties of pure and Pr-doped SrSnO perovskite oxide thin films synthesized by a two-step simple chemical solution deposition route. Structural analysis indicated the high quality of the obtained phase and the alteration generated from the insertion of impurities. Surface scanning illustrated the formation of homogenous and crack-free SrSnO thin films with a nanorod morphology, with an augmentation in size as the dopant ratios increased. Optical properties analysis showed an enhancement in the samples optical absorption with wide-range bandgap tuning. First-principles calculations revealed the exchange interactions between the 3d-4f states and their impact on the electronic properties of the pristine material. Hall-effect measurements revealed an immense decrement in the resistivity of the films upon increment of doping ratios, passing from 7.3 × 10 Ω cm for the undoped sample to 4.8 × 10 Ω cm for 7% Pr content, while a reverse trend was observed on the carrier mobility, rising from 2.5 to 7.6 cm V s for 7% Pr content. The results emphasized the efficiency of the simple synthesis route to produce high-quality samples. The current findings will contribute to paving the way towards expanding the utilization of simple and cost-effective chemical solution deposition methods for the fast and large area growth of stannous-based perovskite oxides for optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043625 | PMC |
http://dx.doi.org/10.1039/d1ra06945d | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
Due to the high configuration entropy, unique atomic arrangement, and electronic structures, high-entropy materials are being actively pursued as bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable zinc-air batteries (ZABs). However, a relevant strategy to enhance the catalytic activity of high-entropy materials is still lacking. Herein, a hole doping strategy has been employed to enable the high-entropy perovskite La(CrMnFeCoNi)O to effectively catalyze the ORR and OER.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
An modelling workflow is used to predict the thermoelectric properties and figure of merit of the lanthanide cobalates LaCoO, PrCoO and NdCoO in the orthorhombic phase with the low-spin magnetic configuration. The LnCoO show significantly lower lattice thermal conductivity than the widely-studied SrTiO, due to lower phonon velocities, with a large component of the heat transport through an intraband tunnelling mechanism characteristic of amorphous materials. Comparison of the calculations to experimental measurements suggests the p-type electrical properties are significantly degraded by the thermal spin crossover, and materials-engineering strategies to suppress this could yield improved .
View Article and Find Full Text PDFAdv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, India.
Pharmaceutical ingredients in water have become a serious threat to living bodies and lead to assorted ecological predicaments. In this study, we have established an electrochemical probe for the simultaneous detection of synthetic pharmaceutical ingredients, including 4-nitroquinoline-N-Oxide (NQN) and ornidazole (ODZ), in both human and environmental samples. This study establishes the detection of NQN and ODZ using a screen-printed carbon electrode (SPCE) modified by highly conducting NbN incorporated with BaZrO perovskite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!