Rutaecarpine (RUT) is an alkaloid isolated from , which has been reported to protect against several inflammatory diseases. However, to the best of our knowledge, the role of RUT in acute lung injury (ALI) and the specific molecular mechanism remain unknown. In the present study, an model of ALI was established in BEAS-2B cells by lipopolysaccharide (LPS) administration. Cell viability following RUT treatment with or without LPS stimulation was evaluated using a Cell Counting Kit-8 assay. The inflammatory response and oxidative stress were detected using ELISA kits and commercially available kits, respectively. TUNEL assay and western blotting were performed to assess cell apoptosis. The expression levels of endoplasmic reticulum (ER) stress-related proteins and AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway-related proteins were measured by western blotting. The results revealed that RUT markedly improved cell viability after LPS treatment in a dose-dependent manner. In addition, RUT inhibited the LPS-induced inflammatory response and oxidative stress in BEAS-2B cells, and suppressed the LPS-induced apoptosis of BEAS-2B cells. Mechanistically, RUT alleviated ER stress by inhibiting the production of CHOP, glucose-regulated protein-78, caspase-12 and activating transcription factor 6. Additionally, western blotting demonstrated that RUT activated the phosphorylation of AMPK and SIRT1, which indicated the involvement of the AMPK/SIRT1 signaling pathway in the protective effect of RUT against LPS-induced lung injury. In conclusion, these results demonstrated that RUT mitigated LPS-induced lung cell injury by inhibiting ER stress via the activation of the AMPK/SIRT1 signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019775PMC
http://dx.doi.org/10.3892/etm.2022.11300DOI Listing

Publication Analysis

Top Keywords

ampk/sirt1 signaling
12
signaling pathway
12
beas-2b cells
12
western blotting
12
rut
9
cell injury
8
endoplasmic reticulum
8
stress activation
8
activation ampk/sirt1
8
lung injury
8

Similar Publications

This study investigated the ameliorative effects of Yinchen lipid-lowering tea (YCLLT) on Non-alcoholic fatty liver disease (NAFLD), the specific mechanism involved was also studied. We modeled hepatocellular steatosis with HepG2 cells and intervened with different concentrations of YCLLT-containing serum. Lipid deposition was assessed by oil red O staining and AdipoR1 expression was analyzed by Western blot.

View Article and Find Full Text PDF

Targeting sirtuins in neurological disorders: A comprehensive review.

Int J Biol Macromol

December 2024

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China. Electronic address:

The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) poses a major risk to human health and exert a heavy burden on individuals, society, and healthcare systems. Therefore, it is critical to identify CVD's underlying mechanism(s) and target them using effective agents. Natural compounds have shown promise as antioxidants with cardioprotective functions against CVD injuries due to their antioxidative solid capacity and high safety profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!