Spironolactone alleviates myocardial fibrosis via inhibition of Ets-1 in mice with experimental autoimmune myocarditis.

Exp Ther Med

Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China.

Published: June 2022

Spironolactone improves cardiac structure, function and prognosis in patients with heart failure and delays the progression of cardiac fibrosis. However, the exact underlying mechanism of this process remains to be elucidated. The present study therefore aimed to explore the protective effect and underlying mechanism of the aldosterone receptor antagonist, spironolactone, on myocardial fibrosis in mice with experimental autoimmune myocarditis (EAM). The EAM model was induced in BALB/c mice via immunization with murine cardiac α-myosin heavy chain sequence polypeptides. The cardiac function of the mice was assessed using echocardiography and the levels of inflammatory cytokines were quantified using ELISA. E26 transformation-specific sequence-1 (Ets-1) expression was knocked down using lentivirus-mediated small interference RNA. Total collagen deposition was assessed using Masson's trichrome and Ets-1, TGF-β1, Smad2/3, collagen I and III protein expression levels were detected using immunohistochemistry and western blotting. MMP-2 and MMP-9 mRNA expression levels and activity was determined using reverse transcription-quantitative PCR and gelatin zymography, respectively. The results of the present study demonstrated that spironolactone significantly improved myocardium hypertrophy, diastolic cardiac function and decreased myocardial inflammation and collagen deposition induced by EAM. Spironolactone treatment significantly inhibited Ets-1 and smad2/3 phosphorylation. In addition, inhibition of Ets-1 reduced the expression and activity of MMP-2 and MMP-9 and decreased cardiac fibrosis in EAM mice. The results indicated that the improvement of myocardial fibrosis by spironolactone may be associated with the TGF-β1/Smad-2/3/Ets-1 signaling pathway in EAM mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019666PMC
http://dx.doi.org/10.3892/etm.2022.11296DOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
12
inhibition ets-1
8
mice experimental
8
experimental autoimmune
8
autoimmune myocarditis
8
cardiac fibrosis
8
underlying mechanism
8
cardiac function
8
collagen deposition
8
expression levels
8

Similar Publications

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.

View Article and Find Full Text PDF

Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.

Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!