With the background of contemporary art, using comprehensive materials to create artworks is becoming more and more common. The new era of digital image-based copperplate artworks, using photosensitive lithography, has given traditional art forms new life and greater popularity in the digital age. However, the patterns and textures of the works created by the new techniques are generally shallow, and the copper surface is easily damaged and loses its aesthetic value, which makes it a practical problem to protect such works more effectively. In this paper, a facile method is adopted, wherein a superhydrophobic film is constructed on the surface of copperplate images by straightforward immersion in (heptadecafluoro-1,1,2,2-tetradecyl)trimethoxysilane (FAS-17) solution to achieve the anticorrosive protection of copperplate artworks. The hydrophobicity of the copper surface was analyzed using an instrument that measures contact angles. The superhydrophobic surface morphology and composition were analyzed with a scanning electron microscope coupled with an energy-dispersive spectrometer, and the corrosion resistance was analyzed using an electrochemical workstation. A systematic study is presented on the effect of the immersion time in FAS-17 and the concentration of FAS-17, and the optimal preparation conditions of the superhydrophobic film were determined, which means that the copper substrates were immersed in 0.7 mol L FAS-17 for 40 min. After the treatment of the surface to make it superhydrophobic, the contact angle and the corrosion inhibition efficiency of the copperplate etching surface reached 161.2° and 95.7%, respectively. The results show that the superhydrophobic film was successfully prepared on the surface of the artwork based on copper, which can effectively improve the corrosion resistance and is beneficial for the long-term protection of artwork.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042051 | PMC |
http://dx.doi.org/10.1039/d0ra08233c | DOI Listing |
Biomimetics (Basel)
December 2024
Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.
View Article and Find Full Text PDFLangmuir
December 2024
School of Computer and Artifitial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
Inspired by the ultrafast directional water transport structure of Sarracenia trichomes, hierarchical textured surfaces with specific microgrooves were prepared based on laser processing combined with dip modification, in response to the growing problem of freshwater scarcity. The prepared surfaces were tested for droplet transport behavior to investigate the relationship between the surface structure and the driving force of directional water transport and their effects on the water transport distance and water transport velocity. The results showed that surfaces with a superhydrophobic background associated channels of multirib structures, and a dual-gradient surface of gradient hydrophobic background associated channels with gradient structure performed the best in terms of water transport efficiency.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.
View Article and Find Full Text PDFSmall
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
Triboelectric nanogenerators (TENGs), among the most simple and efficient means to harvest mechanical energy, have great potential in renewable energy utilization. While the output performance of TENGs is still not high enough, which limits its practical application. Here, a poly(vinylidene fluoride) (PVDF)/fluorinated ethylene propylene nanoparticles (FEP NPs) porous nanofiber (PFPN) membrane with waterproof, breathable, surface superhydrophobic and high tribo-negative properties is proposed for achieving high-performance of TENGs.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States.
Patterned solid surfaces with wettability contrast can enhance liquid transport for applications such as electronics thermal management, self-cleaning, and anti-icing. However, prior work has not explored easy and scalable blade-cut masking to impart topography patterned wettability contrast on aluminum (Al), even though Al surfaces are widely used for thermal applications. Here, we demonstrate mask-enabled topography contrast patterning and quantify the resulting accuracy of the topographic pattern resolution, spatial variations in surface roughness, wettability, drop size distribution during dropwise condensation, and thermal emissivity of patterned Al surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!