A simple-structured super gelator with self-healability and multi-stimuli responses was reported herein, which exhibited multiple visual molecular recognition abilities. Multifunctional applications such as effective lubricants, safe fuels, high-efficient propellants, dyes adsorbents, enhanced fluorescence emission and separation of aldehydes from aqueous solutions are integrated into a single organogelator, which was rarely reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042006PMC
http://dx.doi.org/10.1039/d1ra05605kDOI Listing

Publication Analysis

Top Keywords

multifunctional applications
8
novel self-healing
4
self-healing multi-stimuli-responsive
4
multi-stimuli-responsive supramolecular
4
supramolecular gel
4
gel based
4
based d-sorbitol
4
d-sorbitol diacetal
4
diacetal multifunctional
4
applications simple-structured
4

Similar Publications

A multifunctional photothermal electrospun PLGA/MoS@Pd nanofiber membrane for diabetic wound healing.

Regen Biomater

December 2024

Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.

View Article and Find Full Text PDF

Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.

View Article and Find Full Text PDF

Individual theranostics with an integrated multifunction holds considerable promise for clinical application compared with multicomponent regimes. MnO nanoparticles with an ultrasmall size (4 nm) and mass production capability were developed with dual function of integrated tumor magnetic resonance imaging (MRI) and therapy. The high valence state of MnO nanocrystals enables a sensitive reaction with the glutathione (GSH) molecule and favorable decomposition ability, which further induces a unique, favorable, variable turn-off and turn-on MRI property.

View Article and Find Full Text PDF

A near-infrared amine/HSO probe with colorimetric and fluorescent ultrafast response and its application in food samples and visual evaluation of salmon freshness.

Food Res Int

February 2025

College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.

A multifunctional near-infrared fluorescent probe (Sycy) is synthesized by the one-step condensation reaction of syringaldehyde and tricyanofuran. Sycy can detect HSO within 150 s in the red wine and sugar samples with a low detection limit of 3.5 μM.

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!