Multifaceted property tailoring of polyamide 6 by blending miscible and immiscible components: ternary blends of polyamide 6/polyethylene terephthalate/phenol novolac.

RSC Adv

Material and Processing Department, Polymer Processing and Mechanics Laboratories, Toyota Central R&D Laboratories, Inc. 41-1 Yokomichi Nagakute 480-1192 Japan

Published: April 2020

Ternary polymer blends comprising miscible and immiscible components are examined to improve the mechanical properties of polyamide 6 (PA6) under humid and high-temperature conditions. Miscible polymers increase the glass transition temperature ( ), owing to their strong inter-molecular interactions, while phase-separated immiscible polymers reinforce the physical properties of PA6 as filler materials. Ternary blends exhibit these combined miscible and immiscible component contributions. Thus, in this study, ternary blends comprising PA6, polyethylene terephthalate (PET, immiscible component), and phenol novolac (PN, miscible component) are prepared by melt mixing. The PA6 stiffness in the water-absorbed state is reinforced by PET. Moreover, the proposed PA6/PET/PN ternary blends exhibit higher values and lower water absorption rates than those of the PA6/PET binary blend, owing to the PN contribution. The PET and PN contributions are achieved independently and can be controlled the composition ratios of the component polymers. Multifaceted property tailoring is thus demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052217PMC
http://dx.doi.org/10.1039/d0ra02344bDOI Listing

Publication Analysis

Top Keywords

ternary blends
16
miscible immiscible
12
multifaceted property
8
property tailoring
8
immiscible components
8
blends comprising
8
blends exhibit
8
immiscible component
8
miscible
5
immiscible
5

Similar Publications

Research efforts are increasingly directed towards the development of biodegradable polymers derived from renewable agricultural resources. Polymer blends, which combine multiple polymers, offer enhanced properties such as ductility and toughness while being more cost-effective compared to the development of specialized copolymers. This study examines nine binary and four ternary blends of polylactic acid (PLA), poly(butylene succinate--adipate) (PBSA), and polyhydroxyalkanoate (PHA).

View Article and Find Full Text PDF

Fine-Tuning Intra/Inter-Molecular Interaction via Ternary Copolymerization Strategy to Obtain Efficient Polymer Donors.

Small

January 2025

Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 156 Ke Jia Avenue, Ganzhou, 341000, P. R. China.

Incorporating a third component through ternary copolymerization strategy has proven to be a promising and effective approach for further improving the device performance of polymer donors. However, terpolymer donors typically exhibit negative effects on molecular stacking and weaken charge transport due to the irregular distribution of the polymer skeleton. Herein, two terpolymers PBBQ-5 (5% ff-Qx) and PBBQ-10 (10% ff-Qx) are developed by introducing the difluoro-2-(3-hexyldecyloxy) quinoxaline (ff-Qx) to the main chain of PM6.

View Article and Find Full Text PDF

Introduction of a guest component into the active layer is a simple yet effective approach to enhance the performance of organic solar cells (OSCs). Despite various guest components successfully employed in the OSCs, efficient guest components require deliberate design and ingenious inspiration, which still remains a big challenge for developing high performance OSCs. In this work, we propose a concept of "structural gene" engineering to create a new "double-gene" small molecule (L-DBDD) by simply combining the structures of both donor PM6 and acceptor L8-BO.

View Article and Find Full Text PDF

Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.

View Article and Find Full Text PDF

Benzothiadiazole (BT) has shown promising applications in fullerene solar cells. However, few BT-based polymer donors exhibited a noticeable power conversion efficiency (PCE) for the fused-ring small molecular acceptor-based polymer solar cells (PSCs). Herein, we developed a D-A (D: donor, A: acceptor) polymer donor F-1 based on fluorinated BT (ffBT) as A unit and chlorinated benzo [1,2-b:4,5-b'] dithiophene (BDT-2Cl) as D unit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!