Septic cardiomyopathy (SCM) is a cardiac dysfunction caused by severe sepsis and septic shock that increases the risk of heart failure and death and its molecular mechanism remains unclear. Ferroptosis, a novel form of programmed cell death, has been reported to be present in the heart tissue of patients with sepsis, which demonstrated that ferroptosis may be a potential mechanism of myocardial injury in SCM. Therefore, we explored the role of ferroptosis-related genes (FRGs) in SCM and aimed to identify pivotal ferroptosis-related targets in SCM and potential therapeutic targets involved in the pathological process of SCM. To explore the regulatory mechanisms of ferroptosis in SCM, we identified differentially expressed genes (DEGs) in SCM and FRGs by bioinformatics analysis, and further identified hub genes. And the crucial microRNAs (miRNAs)-FRGs regulatory network was subsequently constructed. Finally, several candidate drugs associated with the hub genes were predicted, and Real-time quantitative reverse Transcription PCR (qRT-PCR) and western blotting analysis were performed to confirm the abnormal expression of hub genes. In this study, we identified several FRGs that may be involved in the pathogenesis of SCM, which helps us further clarify the role of ferroptosis in SCM and deeply understand the molecular mechanisms and potential therapeutic targets of SCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043284PMC
http://dx.doi.org/10.3389/fgene.2022.827559DOI Listing

Publication Analysis

Top Keywords

hub genes
12
scm
10
septic cardiomyopathy
8
bioinformatics analysis
8
targets scm
8
potential therapeutic
8
therapeutic targets
8
ferroptosis scm
8
genes
5
identification validation
4

Similar Publications

FXYD1 was identified as a hub gene in recurrent miscarriage and involved in decidualization via regulating Na/K-ATPase activity.

J Assist Reprod Genet

December 2024

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.

Purpose: Recurrent miscarriage (RM) is a distressing and complicated adverse pregnancy outcome. It is commonly recognized that insufficient decidualization could result in RM, but the molecular mechanisms of decidual impairment are still not fully understood. Thus, this study aimed to identify novel key genes potentially involved in RM and explore their roles played in endometrial decidualization.

View Article and Find Full Text PDF

Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer.

Sci Rep

December 2024

Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China.

Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored. This study applied multiomics approaches, integrating transcriptomic, epigenetic, and somatic mutation data, with consensus clustering algorithms to classify GC molecular subtypes and assess their biological and immunological features.

View Article and Find Full Text PDF

Effects of moderate intensity exercise on liver metabolism in mice based on multi-omics analysis.

Sci Rep

December 2024

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China.

Physical exercise is beneficial to keep physical and mental health. The molecular mechanisms underlying exercise are still worth exploring. The healthy adult mice after six weeks of moderate-intensity exercise (experimental group) and sedentary mice (control group) were used to perform transcriptomic, proteomic, lactylation modification, and metabolomics analysis.

View Article and Find Full Text PDF

Interpretable machine learning-driven biomarker identification and validation for Alzheimer's disease.

Sci Rep

December 2024

Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, China.

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by limited effective treatments, underscoring the critical need for early detection and diagnosis to improve intervention outcomes. This study integrates various bioinformatics methodologies with interpretable machine learning to identify reliable biomarkers for AD diagnosis and treatment. By leveraging differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis (WGCNA), and construction of Protein-Protein Interaction (PPI) Networks, we meticulously analyzed the AD dataset from the GEO database to pinpoint Hub genes.

View Article and Find Full Text PDF

There is growing evidence that programmed cell death plays a significant role in the pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH). Anoikis is a newly discovered type of programmed death and has garnered great attention. However, the precise involvement of Anoikis in the progression of CTEPH remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!