Extensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization. The first has important physiological and psychological implications for the patient, the second impacts survival and quality of the graft. Additionally, accurate reproduction of large amounts of patient's skin in an automated way is essential for upscaling DESS production. Therefore, in the present study, we implemented a new robotic unit (called SkinFactory) for 3D bioprinting of pigmented and pre-vascularized DESS using normal human skin derived fibroblasts, blood- and lymphatic endothelial cells, keratinocytes, and melanocytes. We show the feasibility of our approach by demonstrating the viability of all the cells after printing in vitro, the integrity of the reconstituted capillary network in vivo after transplantation to immunodeficient rats and the anastomosis to the vascular plexus of the host. Our work has to be considered as a proof of concept in view of the implementation of an extended platform, which fully automatize the process of skin substitution: this would be a considerable improvement of the treatment of burn victims and patients with severe skin lesions based on patients own skin derived cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044789 | PMC |
http://dx.doi.org/10.1177/20417314221088513 | DOI Listing |
Purpose: Radiotherapy (RT)/cetuximab (C) demonstrated superiority over RT alone for locally advanced squamous head and neck cancer. We tested this in completely resected, intermediate-risk cancer.
Methods: Patients had squamous cell carcinoma of the head and neck (SCCHN) of the oral cavity, oropharynx, or larynx, with one or more risk factors warranting postoperative RT.
Ann Plast Surg
February 2025
From the Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN.
Background: While there is mounting evidence that closed suction drains are not necessary, there is a paucity of literature to demonstrate that drains are harmful after breast reduction. The purpose of this study was to investigate the effect of drains on postoperative seroma, hematoma, and infection, as well as elucidate any risk factors that may be implicated in the development of these complications.
Methods: A retrospective cohort study was conducted of all reduction mammaplasty procedures at our university medical center between 2010-2020.
Ann Plast Surg
February 2025
From the ThankYou Plastic Surgery Clinic, Seoul, Republic of Korea.
Background: The medial epicanthal fold is a common ethnic trait in East Asian faces, and there is a significant demand for its correction for cosmetic reasons. Numerous epicanthoplasty techniques have been proposed; however, visible scarring and unnatural canthal shapes have been challenges. This study aimed to introduce a simpler approach for medial epicanthoplasty to address these issues and evaluate its outcomes.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to gene mutations. Mice with deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation.
View Article and Find Full Text PDFS D Med
December 2024
Department of Internal Medicine, University of South Dakota Sanford School of Medicine.
Background: Francisella tularensis is an aerobic, gram negative coccobacillus bacterium that causes tularemia. F. tularensis spreads primarily through ticks, biting flies, droplet inhalation, contaminated mud or water, or infected animal bites, and it can survive in animal carcasses with the most common mode of transmission occurring via inoculation into the skin and inhalation/ingestion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!