Unlabelled: To meet the demands for more effective and ecofriendly food packaging strategies, the potential of nisin-loaded rhamnolipid functionalized nanofillers (rhamnosomes) has been explored after embedding in hydroxypropyl-methylcellulose (HPMC) and κ-carrageenan (κ-CR)-based packaging films. It was observed that intrinsically active rhamnosomes based nanofillers greatly improved the mechanical and optical properties of nano-active packaging (NAP) films. Incorporation of rhamnosomes resulted in higher tensile strength (5.16 ± 0.06 MPa), Young's modulus (2777 ± 0.77 MPa), and elongation (2.58 ± 0.03%) for NAP than active packaging containing free nisin (2.96 ± 0.03 MPa, 1107 ± 0.67 MPa, 1.48 ± 0.06%, respectively). NAP demonstrated a homogenous distribution of nanofillers in the biopolymer matrix as elucidated by scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) confirmed that NAP prepared with nisin-loaded rhamnosomes was thermally stable even above 200 °C. Differential scanning calorimetry (DSC) analyses revealed that addition of nisin in nanofillers resulted in a slight increase in Tg (108.40 °C), indicating thermal stability of NAP. Fourier transform infrared spectroscopy (FTIR) revealed slight shift in all characteristic bands of nano-active packaging, which indicated the embedding of rhamnosomes inside the polymer network without any chemical interaction. Finally, when tested on chicken breast filets and cheese slices under refrigerated storage conditions, NAP demonstrated broad-spectrum antimicrobial activity (up to 4.5 log unit reduction) and inhibited the growth of , , , and . These results suggest that HPMC and κ-CR-based NAP containing functionalized nanofillers can serve as an innovative packaging material for the food industry to improve the safety, quality, and shelf-life of dairy and meat products.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11947-022-02815-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033524 | PMC |
http://dx.doi.org/10.1007/s11947-022-02815-2 | DOI Listing |
Food Chem
January 2025
Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China. Electronic address:
With the improvement of living standards, people's expectations for chickens' quality and flavor have also grown. Yupingfeng polysaccharide (YPF-P) has pharmacological effects such as regulating fatty acid composition and gut microbiota. In this study, different doses of YPF-P were added to the feed of qingyuan partridge chickens.
View Article and Find Full Text PDFFoods
December 2024
Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (/) ratio, were randomly selected for analysis using the completely randomized design (CRD).
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Poultry Science, University of Georgia, Athens, GA, USA. Electronic address:
Valine and isoleucine are not only two of the indispensable amino acids (AAs) in chickens but also have special mechanisms with leucine within the branched-chain AA (BCAA) category. Therefore, we aimed to investigate how valine or isoleucine deficiency could specifically affect growth performance in broilers through various analyses. A total of 252 seven-day (d)-old male Cobb 500 broilers were allotted to three treatments with six replicates and reared until d 21.
View Article and Find Full Text PDFAnimal
October 2024
Department of Animal Science, Federal University of Paraná, Curitiba, PR 80035-050, Brazil.
The use of exogenous phytase and vitamin D metabolites such as 25-hydroxycholecalciferol (25-OH-D) for poultry is well consolidated, but the potential for additive effects when supplementing both requires further investigation. This study investigated possible interactions between supplementation of 25-OH-D and high doses of phytase for broilers fed Ca- and P-deficient diets. A total of 1 200 one-d-old male broiler chicks were randomly allocated from one of four dietary treatments in a 2 × 2 factorial arrangement: 600 or 2 000 phytase units (FYT)/kg and with or without the inclusion of 25-OH-D at 69 µg/kg, with 12 replicates of 25 broilers each.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
Hydrogels based on supramolecular assemblies offer attractive features for biomedical applications including injectability or versatile combinations of various building blocks. We here investigate a system combining benzenetrispeptides (BTP), which forms supramolecular fibers, with polymer polyethylene oxide (PEO) forming a dense hydrophilic shell around the fibers. Hydrogels are created through the addition of a bifunctional crosslinker (CL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!