Like other business domains, digital monitoring has now become an integral part of almost every academic institution. These surveillance systems cover all the routine activities happening on the campus while producing a massive volume of video data. Selection and searching the desired video segment in such a vast video repository is highly time-consuming. Effective video summarization methods are thus needed for fast navigation and retrieval of video content. This paper introduces a keyframe extraction method to summarize academic activities to produce a short representation of the target video while preserving all the essential activities present in the original video. First, we perform fine-grain activity recognition using a realistic Campus Activities Dataset (CAD) by modeling activity attention scores using a deep CNN model. In the second phase, we use the generated attention scores for each activity category to extract significant video frames. Finally, we evaluate the inter-frame similarity index used to reduce the number of redundant frames and extract only the representative keyframes. The proposed framework is tested on different videos, and the experimental results show the performance of the proposed summarization process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044333PMC
http://dx.doi.org/10.7717/peerj-cs.911DOI Listing

Publication Analysis

Top Keywords

video
9
video summarization
8
activity attention
8
attention scores
8
summarization framework
4
framework based
4
activity
4
based activity
4
attention modeling
4
modeling deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!