Combinatorial interaction testing, which is a technique to verify a system with numerous input parameters, employs a mathematical object called a covering array as a test input. This technique generates a limited number of test cases while guaranteeing a given combinatorial coverage. Although this area has been studied extensively, handling constraints among input parameters remains a major challenge, which may significantly increase the cost to generate covering arrays. In this work, we propose a mathematical operation, called "weaken-product based combinatorial join", which constructs a new covering array from two existing covering arrays. The operation reuses existing covering arrays to save computational resource by increasing parallelism during generation without losing combinatorial coverage of the original arrays. Our proposed method significantly reduce the covering array generation time by 13-96% depending on use case scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044240 | PMC |
http://dx.doi.org/10.7717/peerj-cs.720 | DOI Listing |
Nat Commun
January 2025
Cary Institute of Ecosystem Studies, Millbrook, NY, USA.
Previous estimates of deep soil inorganic nitrogen (N) reservoirs have been mainly limited to desert soils, however, recent evidence suggests that deep soil pools are far more ubiquitous across biomes and therefore may be important for global N budgets. Here, we used observations from 280 deep soil profiles (2-205 m) across a wide array of ecosystem and land cover types to seek insight into the full geospatial variation of deep soil nitrate. Using a random forest machine learning approach we estimate a total deep soil nitrate pool of 15.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
In drug development, the substitution of benzene rings in aniline-based drug candidates with saturated bridged bicyclic ring systems often enhances pharmacokinetic properties while preserving biological activity. However, current efforts predominantly focuses on bicyclo[1.1.
View Article and Find Full Text PDFCell Death Differ
January 2025
CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
Accumulating evidence suggests that genetic and epigenetic biomarkers hold potential for enhancing the early detection and monitoring of breast cancer (BC). Epigenetic alterations of the Homeobox A2 (HOXA2) gene have recently garnered significant attention in the clinical management of various malignancies. However, the precise role of HOXA2 in breast tumorigenesis has remained elusive.
View Article and Find Full Text PDFJ Low Temp Phys
November 2024
Princeton University, Princeton, NJ USA.
The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment located in the Atacama Desert in Chile that will make precise temperature and polarization measurements over six spectral bands ranging from 27 to 285 GHz. Three small aperture telescopes (SATs) and one large aperture telescope (LAT) will house 60,000 detectors and cover angular scales between one arcminute and tens of degrees. We present the performance of the dichroic, low-frequency (LF) lenslet-coupled sinuous antenna transition-edge sensor (TES) bolometer arrays with bands centered at 27 and 39 GHz.
View Article and Find Full Text PDFACS Photonics
January 2025
Laboratory of Nanoscience for Energy Technologies (LNET), Faculty of Engineering (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland.
Circular dichroism (CD) can distinguish the handedness of the chiral molecules. However, it is typically very weak due to vanishing absorption at low molecular concentrations. Here, we suggest thermal CD (TCD) for chiral detection, leveraging the temperature difference in the chiral sample when subjected to right- and left-circularly polarized excitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!