Using the innovative solid-state loading (milling-assisted loading, MAL) method to confine caffeine to cylindrical pores (SBA-15, = 6 nm) gives the opportunity to explore the original physical states of caffeine and their subsequent transformation using low-frequency Raman spectroscopy, powder X-ray diffraction and microcalorimetry investigations. It was shown that MAL makes possible the loading of the selected form in the polymorphism of caffeine. While form II has similar structural and dynamics properties in confined and bulk forms, the confined rotator phase (form I) exhibits clear differences with the bulk form inherent to its orientational disorder. Interestingly, the two confined forms of caffeine undergo an exothermic disordering transformation upon heating into a physical state at the border between a nanocrystallized orientationally disordered phase and an amorphous state, not existing in the bulk form. The melting of this new physical state was observed at 150 °C, 85 degrees below the melting temperature of the bulk form I, thus demonstrating the confinement of caffeine. It was also found that the liquid confined to pores of 6 nm mean diameter recrystallizes upon cooling, which can be explained by the very disordered nature of the recrystallized state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042713PMC
http://dx.doi.org/10.1039/d1ra05757jDOI Listing

Publication Analysis

Top Keywords

bulk form
12
solid-state loading
8
physical states
8
subsequent transformation
8
physical state
8
caffeine
6
form
6
confined
5
confinement molecular
4
molecular materials
4

Similar Publications

Metal-Organic Frameworks (MOFs) attract attention for their intrinsic porosity, large surface area, and functional versatility. To fully utilize their potential in applications requiring precise control at smaller scales, it is essential to overcome challenges associated with their bulk form. This is particularly difficult for 3D MOFs with spin crossover (SCO) behavior, which undergo a reversible transition between high-spin and low-spin states in response to external stimuli.

View Article and Find Full Text PDF

Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.

View Article and Find Full Text PDF

Intentional nuclear forensics is a concept wherein the deliberate addition of benign and persistent material signatures to nuclear material can be used to reduce the time between the discovery of material outside of regulatory control and determination of its original provenance. One concept within intentional nuclear forensics involves the use of perturbed stable isotopes to generate unique isotope ratio "barcodes" to encode information (e.g.

View Article and Find Full Text PDF

Background: Cardiac macrophages are a heterogeneous population with high plasticity and adaptability, and their mechanisms in heart failure (HF) remain poorly elucidated.

Methods: We used single-cell and bulk RNA sequencing data to reveal the heterogeneity of non-cardiomyocytes and assess the immunoreactivity of each subpopulation. Additionally, we employed four integrated machine learning algorithms to identify macrophage-related genes with diagnostic value, and in vivo validation was performed.

View Article and Find Full Text PDF

Background: Nitrogen mineralization plays a critical role in the ecosystem cycle, significantly influencing both the ecosystem function and the nitrogen biogeochemical cycle. Therefore, it is essential to investigate the evolutionary characteristics of soil nitrogen mineralization during the karst vegetation restoration to better understand its importance in the terrestrial nitrogen cycle.

Methods: This study analyzed from various stages of vegetation growth, including a 40-year-old woodland, 20-year-old shrubland, 15-year-old shrubland, 5-year-old grassland, and nearby cropland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!