Developing functional materials from biomass is a significant research subject due to its unique structure, abundant availability, biodegradability and low cost. A series of chitosan-lignin (CL) composites were prepared through a hydrothermal method by varying the weight ratio of chitosan and lignin. Subsequently, these CL composites were combined with titania (T) to form a nanocomposite (T/CL) using sol-gel and hydrothermal based methods. T/CL nanocomposites exhibited improved photocatalytic performance in comparison with sol-gel and hydrothermally prepared pristine titania (SGH-TiO), towards the selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (Bnald) under UV (375 nm) and visible light (515 nm). More specifically, the 75T/CL(25 : 75) nanocomposite (a representative photocatalyst from the 75T/CL nanocomposite series) showed very high selectivity (94%) towards Bnald at 55% BnOH conversion under UV light. Whereas, SGH-TiO titania exhibited much lower (68%) selectivity for Bnald at similar BnOH conversion. Moreover, the 75T/CL(25 : 75) nanocomposite also showed excellent Bnald selectivity (100%) at moderate BnOH conversion (19%) under visible light. Whereas, SGH-TiO did not show any activity for BnOH oxidation under visible light. XPS studies suggest that the visible light activity of the 75T/CL(25 : 75) nanocomposite is possibly related to the doping of nitrogen into titania from chitosan. However, according to UV-visible-DRS results, no direct evidence pertaining to the decrease in band-gap energy of titania was found upon coupling with the CL composite and the visible light activity was attributed to N-doping of titania. Overall, it was found that T/CL nanocomposites enhanced the photocatalytic performance of titania improved light harvesting and higher selectivity through mediation of active radical species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042820 | PMC |
http://dx.doi.org/10.1039/d1ra06500a | DOI Listing |
Gut Microbes
December 2025
Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.
The etiology of inflammatory bowel disease (IBD) remains unclear, treatment options unsatisfactory and disease development difficult to predict for individual patients. Dysbiosis of the gastrointestinal microbiota and disruption of the biological clock have been implicated and studied as diagnostic and therapeutic targets. Here, we examine the relationship of IBD to biological clock and gut microbiota by using the IL-10 deficient () mouse model for microbiota-dependent spontaneous colitis in combination with altered (4 h/4 h) light/dark cycles to disrupt and time-restricted feeding (TRF) to restore circadian rhythmicity.
View Article and Find Full Text PDFNat Commun
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France.
The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.
View Article and Find Full Text PDFNat Commun
January 2025
NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Melasma significantly impacts life quality, and while various laser therapies show promise, rigorous comparative studies, especially between the novel Picosecond Alexandrite Laser (PSAL) and the traditional combined modality of Q-switched and Long-pulse Nd: YAG Lasers (QLNYL), are notably lacking. This study aims to fill this gap by evaluating the efficacy and safety of these modalities, providing insights into their comparative advantages for clinical practice. In a prospective, evaluator-blinded study, 40 participants with Fitzpatrick Skin Types (FST) III and IV underwent three treatment sessions at four-week intervals with either PSAL or QLNYL.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!