There has been growing interest in water-processable conjugated polymers for biocompatible devices. However, some broadly used conjugated polymers like poly(3-hexylthiophene) (P3HT) are hydrophobic and they cannot be processed in water. We herein report a facile yet highly efficient assembly method to prepare water-dispersible pyridine-containing P3HT (Py-P3HT) nanoparticles (NPs) with a high yield (>80%) and a fine size below 100 nm. It is based on the fast nanoprecipitation of Py-P3HT stabilized by hydrophilic poly(acrylic acid) (PAA). Py-P3HT can form spherical NPs at a concentration up to 0.2 mg/mL with a diameter of 75 nm at a very low concentration of PAA, , 0.01-0.1 mg/mL, as surface ligands. Those negatively charged Py-P3HT NPs can bind with metal cations and further support the growth of noble metal NPs like Ag and Au. Our self-assembly methodology potentially opens new doors to process and directly use hydrophobic conjugated polymers in a much broader context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044166 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.104220 | DOI Listing |
Acc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
This research is designed to enhance the physio-chemical properties, constancy, and antioxidant activities of water-in-oil (W/O) emulsions containing chia seed oil (CSO) by utilizing mung bean protein isolate (MBPI)-peach gum (PG) conjugates, which were created through the Maillard reaction (MR), as the emulsifying agents. The emulsions were prepared using MBPI-PG produced through the Maillard reaction (EMRP) at concentrations of 0.5 %, 1 %, and 1.
View Article and Find Full Text PDFFood Chem
January 2025
Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; HuaShan Technology Company Limited, Qianjiang 433136, China. Electronic address:
Highly sensitive and portable pesticide residues detection are indispensable for safeguarding food safety and environmental health. Herein, we introduce a one-step vacuum filtration strategy for the scalable production of cobalt-based conjugated coordination polymers (CoCCPs) electrode arrays, utilizing carboxylated single-walled carbon nanotubes (c-SWNTs) as bonding bridges (CoCCPs@c-SWNTs). Due to their abundant active sites and high conductivity, the CoCCPs@c-SWNTs arrays exhibit superior electrochemical performance (e.
View Article and Find Full Text PDFLangmuir
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!