Antimicrobial activity and post-antibiotic effects (PAEs) are both important parameters in determination of the dosage regimen of antimicrobial agents. In the present study, antimicrobial activity and PAEs of clindamycin, doxycycline, linezolid, and their nanobiotic formulations were evaluated against two methicillin resistant clinical isolates (MRSA) encoded (MRSA-S1 and MRSA-S2). Nanobiotic formulations increased the susceptibility of MRSA isolates by 4-64 folds as compared to their conventional ones. The PAE values were determined after exposure of MRSA isolates for 1 h to 10× the MICs of the tested antibiotics. The duration of PAEs were recorded after bacterial growth in Mueller Hinton broth (MHB) free from antibiotic has been restored. The PAE values for MRSA-S1 were 2.5 h for the conventional antibiotics. However, the PAEs for nanobiotics were 4 h for both clindamycin and linezolid, while 3 h for doxycycline. For MRSA-S2, linezolid and linezolid nanobiotics PAEs were 3 h. PAEs of clindamycin and clindamycin nanobiotics were 3.75 h and 4 h, respectively. Doxycycline and doxycycline nanobiotics revealed the same PAEs patterns of 3.5 h. The findings of the current study may positively influence the pharmacodynamics of the antibiotics and consequently the dosage regimen of nanobiotics as well as on their clinical outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044563PMC
http://dx.doi.org/10.1039/d1ra08639aDOI Listing

Publication Analysis

Top Keywords

nanobiotic formulations
12
post-antibiotic effects
8
clindamycin doxycycline
8
doxycycline linezolid
8
antimicrobial activity
8
dosage regimen
8
paes clindamycin
8
mrsa isolates
8
pae values
8
paes
7

Similar Publications

Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections.

Microb Pathog

September 2022

Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt. Electronic address:

Antimicrobial agents and alternative strategies to combat bacterial infections have become urgent due to the rapid development of multidrug-resistant bacteria caused by the misuse and overuse of antibiotics, as well as the ineffectiveness of antibiotics against difficult-to-treat infectious diseases. Nanobiotics is one of the strategies being explored to counter the increase in antibiotic-resistant bacteria. Nanobiotics are antibiotic molecules encapsulated in nanoparticles or artificially engineered pure antibiotics that are ≤ 100 nm in size in at least one dimension.

View Article and Find Full Text PDF

Antimicrobial activity and post-antibiotic effects (PAEs) are both important parameters in determination of the dosage regimen of antimicrobial agents. In the present study, antimicrobial activity and PAEs of clindamycin, doxycycline, linezolid, and their nanobiotic formulations were evaluated against two methicillin resistant clinical isolates (MRSA) encoded (MRSA-S1 and MRSA-S2). Nanobiotic formulations increased the susceptibility of MRSA isolates by 4-64 folds as compared to their conventional ones.

View Article and Find Full Text PDF

Antibiotic-resistant and biofilm-forming bacteria have surprisingly increased over recent years. On the contrary, the rate of development of new antibiotics to treat these emerging superbugs is very slow. Therefore, the aim of this study was to prepare novel nanobiotic formulations to improve the antimicrobial activity of three antibiotics (linezolid, doxycycline, and clindamycin) against .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!