Tumor necrosis factor (TNF) receptor type II (TNFR2) is expressed in various tumor cells and some immune cells, such as regulatory T cells and myeloid-derived suppressing cells. TNFR2 contributes a lot to the tumor microenvironment. For example, it directly promotes the occurrence and growth of some tumor cells, activates immunosuppressive cells, and supports immune escape. Existing studies have proved the importance of TNFR2 in cancer treatment. Here, we reviewed the activation mechanism of TNFR2 and its role in signal transduction in the tumor microenvironment. We summarized the expression and function of TNFR2 within different immune cells and the potential opportunities and challenges of targeting TNFR2 in immunotherapy. Finally, the advantages and limitations of TNFR2 to treat tumor-related diseases are discussed, and the problems that may be encountered in the clinical development and application of targeted anti-TNFR2 agonists and inhibitors are analyzed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048045 | PMC |
http://dx.doi.org/10.3389/fonc.2022.862154 | DOI Listing |
J Immunother Cancer
December 2024
Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
Background: Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood.
Methods: Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2 Treg cells and TNFR2 Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression.
Front Pharmacol
December 2024
Department of Biomedical Sciences, Graduate School of Chonnam National University, Jeollanam-do, Republic of Korea.
Background: Usenamine A (UA) is a natural compound isolated from the lichen , and its therapeutic effects on rheumatic diseases are not well understood. This study aimed to evaluate the potential anti-inflammatory effects of UA and its therapeutic effects on rheumatoid arthritis (RA) and ankylosing spondylitis (AS).
Materials And Methods: Molecular docking was performed between the 3D structure of UA and the TNF-TNFR2 complex.
J Exp Clin Cancer Res
November 2024
Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands. Electronic address:
Bacterial respiratory infections are a major global health concern, often leading to lung injury and triggering lung repair mechanisms. Endogenous epithelial progenitor cells are crucial in this repair, yet the mechanisms remain poorly understood. This study investigates the response of lung epithelial progenitor cells to injury induced by lipopolysaccharide (LPS), a component of gram-negative bacteria, focusing on their regulation during lung repair.
View Article and Find Full Text PDFBlood Adv
November 2024
The University of Alabama at Birmingham, Birmingham, Alabama, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!