Pancreatic cancer is one of the most common malignant tumors in the digestive system with a poor prognosis. Accordingly, better understanding of the molecular mechanisms and innovative therapies are warranted to improve the prognosis of this patient population. In addition to playing a crucial role in coagulation, platelets reportedly contribute to the growth, invasion and metastasis of various tumors, including pancreatic cancer. This narrative review brings together currently available evidence on the impact of platelets on pancreatic cancer, including the platelet-related molecular mechanisms of cancer promotion, pancreatic cancer fibrosis, immune evasion, drug resistance mechanisms, thrombosis, targeted platelet therapy, combined radiotherapy and chemotherapy treatment, platelet combined with nanotechnology treatment and potential applications of pancreatic cancer organoids. A refined understanding of the role of platelets in pancreatic cancer provides the foothold for identifying new therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039220 | PMC |
http://dx.doi.org/10.3389/fonc.2022.850485 | DOI Listing |
iScience
January 2025
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.
View Article and Find Full Text PDFiScience
January 2025
Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiological Nuclear and Laboratory Medicine - Pisa University Hospital, Via Paradisa 2, Pisa 56124, Italy.
Since rare pancreatic cystic tumors may differ from common pancreatic cystic neoplasms in terms of treatment plan and prognosis, the differential diagnosis of these diseases is clinically relevant. Various imaging tests play an important role in the differential diagnosis of rare cystic pancreatic tumors, but accurately distinguishing these diseases solely on the basis of imaging findings is challenging. The purpose of this pictorial review is to present CT and in particular MR imaging features of rare pancreatic cystic tumors and discuss potential elements for differential diagnosis.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
Intrapancreatic fat deposition (IPFD) has garnered increasing attention in recent years. The prevalence of IPFD is relatively high and associated with factors such as obesity, age, and sex. However, the pathophysiological mechanisms underlying IPFD remain unclear, with several potential contributing factors, including oxidative stress, alterations in the gut microbiota, and hormonal imbalances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!