Nylons have great potential for electrical applications requiring high polarizability and low dielectric loss. Recently, the narrow single hysteresis loop with relaxor ferroelectricity and the double hysteresis loop due to antiferroelectricity have been reported in nylon random copolymers, terpolymers, and common even-numbered nylons. Although several studies of ferroelectric nylons have been reported, even-even-numbered and odd-even-numbered nylons have not been sufficiently explored. Here, the ferroelectricity of spin-coated even-even-numbered and odd-even-numbered nylons was investigated. A series of even-even-numbered nylons, including nylons 6-12, 10-12, and 12-12, and an odd-even-numbered nylon, nylon 11-12, were polymerized with 1,10-dodecanedicarboxylic acid (12) and four aliphatic diamines with various methylene units, 1,6-hexanediamine (6), 1,10-decanediamine (10), 1,11-undecanediamine (11), and 1,12-dodecanediamine (12). The obtained nylon polymers were spin coated and then subjected to melt-quenching or thermal annealing followed by quenching. From the X-ray diffraction and the electrical hysteresis loop data, the correlation between the ferroelectricity and the crystal parameters of crystallinity and crystallite size of the γ crystal phase was investigated. Furthermore, the free volume of the nylon samples was estimated to correlate with the ferroelectricity. Temperature-dependent ferroelectricity was investigated for nylon 10-12. At a high temperature, the nylon samples showed a narrow polarization-electric field hysteresis loop and a rhombus-shaped polarization current-electric field hysteresis loop due to the relaxor ferroelectricity. This behaviour was caused by electrically rotating the nanodomains with weakened hydrogen bonds at higher temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052398 | PMC |
http://dx.doi.org/10.1039/d0ra02310h | DOI Listing |
Phys Rev Lett
December 2024
BM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom.
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.
With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country, UPV/EHU, 20018 San Sebastian, Spain.
We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops and magnetic field dependence of the GMI ratio upon heating in both of the studied samples. We observed a noticeable improvement in the GMI ratio and a change in hysteresis loops from rectangular to inclined upon heating in Fe-rich microwire.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland.
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!