Adherent cultured cells are widely used biological tools for a variety of biochemical and biotechnology applications, including drug screening and gene expression analysis. One critical step in culturing adherent cells is the dissociation of cell monolayers into single-cell suspensions. Different enzymatic and non-enzymatic methods have been proposed for this purpose. Trypsinization, the most common enzymatic method for dislodging adhered cells, can be detrimental to cells, as it can damage cell membranes and ultimately cause cell death. Additionally, all available techniques require a prolonged treatment duration, typically on the order of minutes (5-10 min). Dissociation of cells becomes even more challenging in microfluidic devices, where, due to the nature of low Reynolds number flow and reduced mixing efficiency, multiple washing steps and prolonged trypsinization may be necessary to treat all cells. Here, we report a novel acoustofluidic method for the detachment of cells adhered onto a microchannel surface without exposing the cells to any enzymatic or non-enzymatic chemicals. This method enables a rapid (, on the order of seconds), cost-effective, and easy-to-operate cell detachment strategy, yielding a detachment efficiency of ∼99% and cellular viability similar to that of the conventional trypsinization method. Also, as opposed to biochemical-based techniques (, enzymatic), in our approach, cells are exposed to the dissociating agent (, substrate-mediated acoustic excitation and microstreaming flow) only for as long as they remain attached to the substrate. After dissociation, the effect of acoustic excitation is reduced to microstreaming flow, therefore, minimizing unwanted effects of the dissociating agent on the cell phenotype. Additionally, our results suggest that cell excitation at acoustic powers lower than that required for complete cell detachment can potentially be employed for probing the adhesion strength of cell-substrate attachment. This novel approach can, therefore, be used for a wide range of lab-on-a-chip applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042199PMC
http://dx.doi.org/10.1039/d1ra04875aDOI Listing

Publication Analysis

Top Keywords

cells
10
adhered cells
8
enzymatic non-enzymatic
8
cell detachment
8
dissociating agent
8
acoustic excitation
8
microstreaming flow
8
cell
7
ultrafast enzyme-free
4
acoustic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!